HPC @LMRS: on superfluids and phase change materials.

Francky Luddens

Rencontres Mathématiques de Rouen, June 21st, 2019

Outline

Quantum turbulence exploration

Our project Gross-Pitaevskii equation Real time problem Imaginary time problem

Phase change materials

Our project Model and equations Solution method Validations and simulations

Conclusion

Numerical simulation of complex physical phenomena

Outline

Quantum turbulence exploration

Our project Gross-Pitaevskii equation Real time problem Imaginary time problem

Phase change materials

Conclusion

Quantum turbulence exploration

- Different successive projects/collaborations...
 - ANR project BECASIM (2013-2017), more focused on Bose-Einstein condensate)
 - ANR project QUTE-HPC (2019-2022)
- ... involving many people from different communities
 - I. Danaila, I. Ciotir, C. Lothodé, F. L.,
 - M. Brachet, L. Danaila, E. Lévêque, Ph.-E. Roche.

Characteristic scales Quantum Turbulence	Vortex core diameter (nm) Vortex reconnections Kelvin waves (µm)	Intervortex distance (mm) Tube diameter		
	$d \sim \xi \sim 10^{-10}$ m	$\delta \sim 10^{-5} \text{ m}$ $D \sim 0.1 - 1 \text{ m}$		
Well-established models for each component	Gross-Rtaevskii (GP) for superfluid Navier-Stokes (NS) for normal fluid			
Bisting models for global QT problem		Navier-Stokes for normal fluid Euler (+ coupling) for superfluid = two-fluid HVBK model		
	Navier-Stokes (NS) for normal fluid Vorter, Rilaments (NF) for superfluid = VFNS			
Our approach for global QT problem	Quantum Turbulence Large-Eddy Simulation (QT-LES)			
		Navier-Stokes for normal fluid		
	Gross-Fitaevskii (GP) for superfluid Navier-Stokes (NS) for normal fluid = vortex tangle subgrid-scale model	Euler (+coupling) for superfluid + vortex tangle subgrid-scale model = NEW three-fluid model		

ANR Project QUTE-HPC : QUantum Turbulence Exploration by High-Performance Computing

Quantum Turbulence (QT) :

- multi-scale, multi-physics phenomenon,
- ▶ in (super) cold systems (Bose-Einstein condensate, superfluid Helium),
- coexistence of a "normal" fluid (viscous) and a superfluid (no viscosity).

Framework

Superfluid (very small scales) :

Gross-Pitaevskii equation (non linear Schrödinger)

$$i\partial_t \psi = -\frac{1}{2}\Delta\psi + V(\mathbf{x})\psi + \beta|\psi|^2\psi - i\Omega L_z\psi$$

 GPS code (for Gross-Pitaevskii Simulator) : spectral or high-order compact FD scheme.

"Normal" fluid :

Navier-Stokes equations

 $\nabla u = \mathbf{0}$ $\partial_t u + u \nabla u - \nu \Delta u = -\nabla p$

Is it possible to design models and numerical methods to couple all possible scales?

Superfluid = fluid without viscosity?

Gross-Pitaevskii equation (for QT) :

$$i\partial_t\psi = -\frac{1}{2}\Delta\psi + \beta|\psi|^2\psi$$

Where are the hydrodynamic quantities?

Superfluid = fluid without viscosity?

Gross-Pitaevskii equation (for QT) :

$$i\partial_t\psi = -\frac{1}{2}\Delta\psi + \beta|\psi|^2\psi$$

Where are the hydrodynamic quantities?

Madelung transformation

$$\psi = \sqrt{\rho} e^{i\theta}$$

- ρ is the density of the fluid,
- $\mathbf{u} := \nabla \theta$ is the velocity,
- creation of vortices in the superfluid (topological defects),
- circulation is quantized,
- recover Euler-like equations

$$\partial_t
ho +
abla \cdot (
ho \mathbf{u}) = \mathbf{0}, \ \partial_t (
ho \mathbf{u}) +
abla \cdot (
ho \mathbf{uu}) = \mathbf{g},$$

First step : GP only

GPS code :

- spatial : spectral method with periodic BC, or 6th order compact FD scheme (periodic or Dirichlet BC),
- real-time simulations : second order ADI time-splitting,
- imaginary-time simulations : full Newton method or semi-implicit backwards Euler,
- two levels of parallelization : MPI and OpenMP,
- pencil distribution of the grid.

Are there connections, similarities between QT and classical turbulence?

- Test different initial conditions (with or without vortices),
- Run GPS code,
- Get accurate and relevant diagnostics : energy spectra, structure functions, helicity,...
- Comparison between physical settings?
- Need for benchmarks !

At t = 0, ψ is made of 50 pairs of vortex rings (randomly set in the domain)

At t = 0, ψ is made of 50 pairs of vortex rings (randomly set in the domain)

At t = 0, ψ is made of 50 pairs of vortex rings (randomly set in the domain)

Good conservation of norm and energy!

At t = 0, ψ is made of 50 pairs of vortex rings (randomly set in the domain)

Comparisons in progress with M. Kobayashi (Kyoto).

At t = 0, $\psi = e^{i\theta}$ with θ cubic splines from 64 random values. No vortex at t = 0!

At t = 0, $\psi = e^{i\theta}$ with θ cubic splines from 64 random values. No vortex at t = 0!

At t = 0, $\psi = e^{i\theta}$ with θ cubic splines from 64 random values. No vortex at t = 0!

Comparisons in progress with M. Kobayashi (Kyoto).

previous IC are somewhat artificial,

- previous IC are somewhat artificial,
- idea : get a GP initial condition close to a classical flow

- previous IC are somewhat artificial,
- idea : get a GP initial condition close to a classical flow

Set **u**^{adv} a "target velocity" and minimize the energy

$$\mathcal{J}(\psi) := \int_{\Omega} \frac{1}{2} |\nabla \psi - i \ u^{adv} \psi|^2 + \frac{\beta}{2} \left(|\psi|^2 - 1 \right)^2.$$

- previous IC are somewhat artificial,
- idea : get a GP initial condition close to a classical flow

Set \mathbf{u}^{adv} a "target velocity" and minimize the energy

$$\mathcal{J}(\psi) := \int_{\Omega} \frac{1}{2} |\nabla \psi - i u^{adv} \psi|^2 + \frac{\beta}{2} \left(|\psi|^2 - 1
ight)^2.$$

Gradient flow method : introduce imaginary-time (pseudo time) and solve the problem until steady state is achieved :

$$\partial_t \phi - \frac{1}{2} \Delta \phi + \beta |\phi|^2 \phi - \beta \phi + \frac{\|\mathbf{u}^{adv}\|^2}{2} \phi - i \mathbf{u}^{adv} \cdot \nabla \phi = \mathbf{0}$$

Then use ϕ as initial state for real-time GP.

Imaginary time scheme

Originally in GPS :

Semi-implicit backwards Euler (Bao et al.)

$$\frac{\phi_{n+1} - \phi_n}{\delta t} - \frac{1}{2} \Delta \phi_{n+1} + \beta |\phi_n|^2 \phi_{n+1} - \beta \phi_{n+1} + \frac{\|\mathbf{u}^{adv}\|^2}{2} \phi_{n+1} - i \mathbf{u}^{adv} \cdot \nabla \phi_{n+1} = 0.$$

Full Newton method

$$\frac{\phi_{n+1} - \phi_n}{\delta t} - \frac{1}{2} \Delta \phi_{n+1} + \beta |\phi_{n+1}|^2 \phi_{n+1} - \beta \phi_{n+1} + \frac{\|\mathbf{u}^{adv}\|^2}{2} \phi_{n+1} - i \mathbf{u}^{adv} \cdot \nabla \phi_{n+1} = 0.$$

- Systems preconditionned by diagonal terms in physical space (Antoine & Dubosq),
- + renormalization (for BEC).

For our cases, sufficient to use simpler semi-implicit scheme, and no renormalization :

$$\frac{\phi_{n+1}-\phi_n}{\delta t}-\frac{1}{2}\Delta\phi_{n+1}+\beta|\phi_n|^2\phi_n-\beta\phi_n+\frac{\|\mathbf{u}^{adv}\|^2}{2}\phi_n-i\mathbf{u}^{adv}\cdot\nabla\phi_n=0.$$

 $\begin{array}{l} \textbf{Taylor-Green flow}\\ \textbf{u}^{\textit{adv}} \text{ defined by }: \end{array}$

$$\mathbf{u}^{adv} = \begin{pmatrix} \sin(x)\cos(y)\cos(z)\\ \cos(x)\sin(y)\cos(z)\\ 0 \end{pmatrix}$$

 $\psi_{|t=0}$ contains vortices with winding number 3.

Taylor-Green flow (cont'd)

	E_k^i	E ^c _k	Eq	Ei
GPS	0.129 567	0.000 272	0.007 804 1	0.013 0279
MB	0.129 570	0.000 272	0.007 804	0.013 028

Energies computed at the end of imaginary time run : GPS computation (top) vs. data from M. Brachet (bottom).

Perspectives

This work was performed using computing resources of CRIANN (Normandie)

- GPS will be able to run interesting cases of QT,
- resolution up to 4096³,
- good agreement with other codes (MK, MB).

A lot of ongoing work :

- check energy spectra, structure function, ...
- Iink between QT and CT?
- how to integrate GP+NS? (at different scales)

Outline

Quantum turbulence exploration

Phase change materials

Our project Model and equations Solution method Validations and simulations

Conclusion

Phase change materials

Different successive projects/collaborations...

- (Regional) project M2NUM (2015-2019)
- RIN M2SiNUM (2018-2021)
- Collaborations with Orange Labs
- ... involving many people from different communities
 - I. Danaila, P. Jolivet, C. Lothodé, F. L., A. Rakotondrandisa, G. Sadaka, P-H. Tournier,
 - L. Danaila, E. Varea,
 - S. Le Masson.

Phase changing materials (PCM) : what for?

Orange labs, Lannion, France.

- passive thermal regulation (buildings, tablets e.g.), ►
- energy storage? ►
- need a better understanding of the mechanisms.

Navier-Stokes-Boussinesq approximation + Enthalpy model

Single domain approach (dimensionless equations)

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \rho - \frac{1}{\text{Re}} \nabla^2 \mathbf{u} - f_B(\theta) \mathbf{e}_y = A(\theta)\mathbf{u},$$

$$\frac{\partial (C\theta)}{\partial t} + \nabla \cdot (C\theta \mathbf{u}) - \frac{K}{\text{Pr Re}} \nabla^2 \theta + \frac{\partial (CS(\theta))}{\partial t} = 0.$$

Navier-Stokes-Boussinesq approximation + Enthalpy model

Single domain approach (dimensionless equations)

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \rho - \frac{1}{\mathrm{Re}} \nabla^2 \mathbf{u} - f_{\mathcal{B}}(\theta) \mathbf{e}_{\mathcal{Y}} = \mathcal{A}(\theta)\mathbf{u}$$

$$\frac{\partial (C\theta)}{\partial t} + \nabla \cdot (C\theta \mathbf{u}) - \frac{K}{\mathrm{Pr} \mathrm{Re}} \nabla^2 \theta + \frac{\partial (CS(\theta))}{\partial t} = 0.$$

- liquid-solid interface at $\theta = 0$,
- *f*_B(θ) : linearized Boussinesq force
- A(θ) : penalty term
- C, K possibly depend on θ

- S, A discontinuous functions regularization for the simulations (tanh)
- huge variations in the coefficients ~> stiff problems

•
$$A = -C_{CK} \frac{(1 - \lambda(\theta))^2}{\lambda(\theta)^3 + b}$$

Numerical methods

Space and time discretization

- ► Taylor-Hood triangular finite elements, i.e. P₂ for the velocity, P₁ for the pressure and P₁/P₂ for the temperature,
- Second-order in time : Gear implicit scheme :

$$\frac{\partial \phi}{\partial t} \simeq \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\delta t},$$

- Newton method for the nonlinear terms,
- Mesh adaptation at each step,
- Implementation with FreeFem++.

Academic test cases (natural convection solver)

Natural convection only

2D melting of PCM

 \Rightarrow Good quantification of the position of the interface, the liquid fraction, transferred heat...

3D melting

Egn: +0.015z -0.0018 = 0

3D melting

Perspectives

This work was performed using computing resources of CRIANN (Normandie) and MATRICS (Picardie).

- > Phase change is well-treated, interface is correctly captured,
- Possibility to treat more complex density variations (e.g. water freezing),
- Parallelization done using FFDDM,

To do list :

- More 3D validation needed (complex geometries),
- Homogenization problems?
- Influence on PCM on a convection cell,
- More physics in the solidification process (dendrites),
- Limitations of the FE approach?

Thank you!

