Physics Informed Neural Networks for Heat Conduction with Phase Change

Bahae-Eddine Madir, Corentin Lothodé, Francky Luddens, Ionut Danaila

LMRS, Université de Rouen Normandie

September 24, 2024

- **[Phase change materials \(PCM\), Stefan's problem](#page-2-0)**
- ² Neural networks, Physics Informed [Neural Networks \(PINNs\)](#page-7-0)
- ³ PINNs [for Stefan's problem](#page-14-0)
- **A** [Conclusion](#page-20-0)

1. [Phase change materials \(PCM\), Stefan's problem](#page-2-0)

[Phase change materials \(PCM\), Stefan's problem](#page-2-0)

Neural networks, Physics Informed [Neural Networks \(PINNs\)](#page-7-0) PINNs [for Stefan's problem](#page-14-0) [Conclusion](#page-20-0)

[Phase change materials](#page-3-0)

 $\nabla \cdot u = 0$

Navier-Stokes-Boussinesq equations

$$
\frac{\partial u}{\partial t} + (u \cdot \nabla) u + \nabla p - \frac{1}{Re} \nabla^2 u - f_B(\theta) e_y - A(\theta) u = 0,\n\frac{\partial C \theta}{\partial t} + \nabla \cdot (C \theta u) - \nabla \cdot \left(\frac{K}{Re Pr} \nabla \theta \right) + \frac{\partial C S(\theta)}{\partial t} = 0.
$$

The velocity field \boldsymbol{u} in the liquid part of a PCM heated vertically from the right.

Image ref: Gong et al., 2015

[Stefan's problem](#page-4-0)

A block of ice at a constant temperature 1 θ_c is heated from the left side to a temperature θ_h . The temperature θ of the system satisfies the following:

> $\partial_t \theta$ _l − Fo ∂_x^2 $\mathcal{T} \times \Omega_L$ $\partial_t \theta_s - F \circ \partial_x^2 \theta_s = 0, \qquad \qquad \mathcal{T} \times \Omega_s,$ $\partial_x \theta_s - \partial_x \theta_l = Fo^{-1}Ste^{-1} S'(t), \qquad \mathcal{T}, x = S(t).$

¹In a dimensionless setting!

[Enthalpy formulation](#page-5-0)

The enthalpy of the liquid-solid system is defined as

$$
H = \theta + Ste^{-1} \varphi(\theta)
$$

with φ representing the liquid fraction (Heaviside fct.). Substituting H into the heat equation, leads to

$$
\partial_t H - F \circ \partial_x^2 \theta = 0. \tag{1}
$$

For numerical and computational feasibility, φ is smoothed to

$$
\varphi_\delta(\theta) = \frac{1}{2}\left(1 + \tanh\frac{\theta}{\delta}\right), \quad \delta > 0.
$$

Resulting the (one insted of two) PDE

$$
\partial_t \theta - \mathsf{Fo} \, \partial_x^2 \theta + \mathsf{Ste}^{-1} \, \partial_t \varphi_\delta(\theta) = 0. \tag{2}
$$

[Reference solution](#page-6-0)

A few remarks:

- An exact analytical solution to the Stefan problem is possible, if the block of ice occupies a semi-infinite region.
- In an actual melting problem, the material (ice) has a finite length.
- In the enthalpy formulation, the regularized problem (with φ_{δ}) differs from the regular problem (with φ), since δ does not necessarily tend to zero. As a result, the solutions could also differ.

Consequences: We avoid using the exact solution, and instead generate a reference solution specific to the regularized problem.

The problem is addressed numerically using the FD method: applying Crank-Nicolson's scheme for time integration and central FD for spatial discretization. To solve the resulting nonlinear problem, we employed the Newton-Raphson method.

2. Neural networks, Physics Informed [Neural Networks \(PINNs\)](#page-7-0)

A neural network of n layers, is the composition of n functions $\ell^k: x \mapsto \ell(x, \theta_k), \ \theta_k$ denotes the set of parameters for the kth layer

$$
u_{\theta}(x) = \ell^{n} \circ \ell^{n-1} \circ \cdots \circ \ell^{1}(x) \tag{3}
$$

The popular one: *Multi Layer Perceptron* with $\ell^k(x) = \sigma^k (W^k x + b^k)$

["Training/Learning"](#page-9-0)

A neural network with 4 layers, each containing one neuron

In other words

$$
\theta^* = \underset{\theta}{\arg\min} \mathcal{L}(\theta, \widehat{y}, y). \tag{4}
$$

 $z^k = W^k a^{k-1} + b^k$ $a^k = \sigma(z^k)$, $a^0 = x$

A shallow neural network (with one hidden layer) can approximate any continuous function with any given accuracy, provided it has a sufficient number of neurons (Hornik. 1991)

[Phase change materials \(PCM\), Stefan's problem](#page-2-0) Neural networks, Physics Informed [Neural Networks \(PINNs\)](#page-7-0) PINNs [for Stefan's problem](#page-14-0) [Conclusion](#page-20-0) [Physics Informed Neural Networks](#page-11-0)

Consider PDE

$$
\partial_t u + \mathcal{N}[u] = 0, \qquad \qquad \mathcal{T} \times \Omega, \n u(t, x) = g(t, x), \qquad \qquad \mathcal{T} \times \partial \Omega, \n u(0, x) = h(x), \qquad \qquad \Omega.
$$
\n(5)

The solution u to the problem can be approximated with a neural network $\hat{u} := u_{\theta}$, by minimizing with respect to parameters θ , the loss functions:

$$
\mathcal{L}_r = \|\partial_t \hat{u} + \mathcal{N}[\hat{u}]\|_{\mathcal{T} \times \Omega, N_r},
$$

\n
$$
\mathcal{L}_b = \|\hat{u} - g\|_{\mathcal{T} \times \partial \Omega, N_b},
$$

\n
$$
\mathcal{L}_0 = \|\hat{u} - h\|_{\Omega, N_0}.
$$

 $||f||_{A, N} = \frac{1}{N} \sum_{k=1}^{N} |f(x_k)|^2$, x_k are randomly chosen uniformly on A.

[Physics Informed Neural Networks](#page-11-0)

Figure: Physics Informed Neural Network (PINN): a neural network is employed to predict the solution μ for the problem. Then, using automatic differentiation, the loss functions are computed and minimized with respect to the network parameters.

Consider Poisson's problem in [0, 1]

$$
-u''(x) = 4\pi^2 \sin(2\pi x), \qquad u(0) = u(1) = 0.
$$

Let \hat{u} be a shallow neural network of 10 neurons, with $\sigma = \tanh$. We set:

$$
\mathcal{L}_r = \frac{1}{15} \sum_{k=1}^{15} |\widehat{u}''(x_r^k) + 4\pi^2 \sin(2\pi x_r^k)|^2,
$$

$$
\mathcal{L}_u = \widehat{u}(0)^2 + \widehat{u}(1)^2, \quad \mathcal{L} = \mathcal{L}_r + \mathcal{L}_u.
$$

Figure: Approximation of $u_{\rm ex}(x) = \sin(2\pi x)$, relative L_2 error of $O(10^{-4})$ at the end.

3. PINNs [for Stefan's problem](#page-14-0)

We will test the behavior of the method (PINNs) for two cases:

- When the enthalpy jump is moderate e.g. $Ste = 0.5$.
- When the enthalpy jump is large e.g. $Ste = 0.005$.

 $Fo=10^{-2}$, $\delta=0.05$ remain fixed. For both cases we use a neural network of two inputs (t, x) , six hidden layers of 20 neurons, with activation function $\sigma = \tanh$.

In the following, \mathcal{L}_r , \mathcal{L}_0 , and \mathcal{L}_b represent the physics-informed loss (residual) terms, corresponding to the PDE, the initial condition, and the boundary condition, respectively.

Reminder, the enthalpy is defined as

$$
H_{\delta} = \theta + Ste^{-1} \varphi_{\delta}(\theta).
$$

The PDE

$$
\partial_t \theta - \mathit{Fo}\, \partial_x^2 \theta + \mathit{Ste}^{-1}\, \partial_t \varphi_\delta(\theta) = 0.
$$

[Case of](#page-16-0) $Ste = 0.5$

Case of $Ste = 0.5$

Figure: Solution of [\(2\)](#page-5-1) by minimizing $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_b + \mathcal{L}_r$ over 10⁵ iterations of gradient descent (Adam type). The relative L_2 error at the end is of $O(10^{-3})$.

[Case of](#page-17-0) $Ste = 0.005$

Case of $Ste = 0.005$

Figure: Solution of [\(2\)](#page-5-1) by minimizing $\mathcal{L}=\omega_0\mathcal{L}_0+\omega_b\mathcal{L}_b+\omega_r\mathcal{L}_r$ over 10^5 iterations of gradient descent (Adam type).

²see Sifan Wang et al. 2021.

[Pointwise weighting](#page-18-0)

Pointwise weighting (still in the case $Ste = 0.005$)

Instead of using one weight for one loss function, we attribute to each training point (t, x) a weight $\omega(t, x)$ e.g.

$$
\begin{aligned} \text{(before)} \quad &\omega_r \mathcal{L}_r = \frac{\omega_r}{N_r} \sum_{k=1}^{N_r} \left| \partial_t \widehat{\theta}(t_k, x_k) - F \partial_x^2 \widehat{\theta}(t_k, x_k) + Ste^{-1} \partial_t \varphi_\delta(\widehat{\theta})(t_k, x_k) \right|^2, \\ \text{(after)} \quad &\omega_r \mathcal{L}'_r = \frac{1}{N_r} \sum_{k=1}^{N_r} m(\omega_r(t_k, x_k))^2 \left| \partial_t \widehat{\theta}(t_k, x_k) - F \partial_x^2 \widehat{\theta}(t_k, x_k) + Ste^{-1} \partial_t \varphi_\delta(\widehat{\theta})(t_k, x_k) \right|^2, \end{aligned}
$$

with m is a strictly \nearrow non linear function. Same thing for $\omega_0\mathcal{L}_0$ and $\omega_b\mathcal{L}_b$. The problem is formulated as follows:

$$
(\Theta^{\star}, \omega_i^{\star}, \omega_b^{\star}, \omega_r^{\star}) = \min_{\Theta} \max_{\omega_i, \omega_b, \omega_r} \mathcal{L}(\Theta, \omega_i, \omega_b, \omega_r)
$$
(6)

[Pointwise weighting](#page-18-0)

Figure: Solution of [\(2\)](#page-5-1) by minimizing $\mathcal{L} = \omega_0 \mathcal{L}'_0 + \omega_b \mathcal{L}'_b + \omega_r \mathcal{L}'_r$ over 10⁵ iterations of gradient descent (Adam type). The relative L_2 error at the end is 2.4×10^{-2} .

4. [Conclusion](#page-20-0)

Conclusion, Perspectives

- For $Ste = 0.5$ we can directly approximate the solution of the problem.
- For $Ste = 0.005$ "sharp solution" \Rightarrow difficulties in the learning process, it is necessary to balance the components of the loss function, globally or locally.
- Next step: coupling Stefan's problem with the Navier-Stokes equations (Navier-Stokes-Boussinesq).

Thank you for your attention!