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1. Phase change materials (PCM), Stefan’s problem




Phase change materials (PCM), Stefan’s problem

Phase change materials
Stefan’s problem

Enthalpy formulation
Reference solution

Navier-Stokes-Boussinesq equations

V-u=0,
ace 6C5(9),
T+V (C()u) V- (Wv0> ot =0.

The velocity field v in the liquid
part of a PCM heated vertically
from the right.

Image ref: Gong et al., 2015
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Phase change materials (PCM), Stefan’s problem Phase change materials
Stefan’s problem

Enthalpy formulation
Reference solution

A block of ice at a constant temperature1 0. is heated from the left side to a
temperature 0. The temperature 6 of the system satisfies the following:

040, — Fo 826, = 0, T % Q,
0:0; — Fo 820, = 0, T x Qs,

D:0s — 00 = Fo 'Ste”' S'(t), T, x=S(¢t).

'In a dimensionless setting!
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Phase change materials (PCM), Stefan’s problem Phase change materials
Stefan’s problem

Enthalpy formulation
Reference solution

The enthalpy of the liquid-solid system is defined as
H = 0 + Ste™ " (6)

with ¢ representing the liquid fraction (Heaviside fct.). Substituting H into the heat
equation, leads to
O:H — Fod20 = 0. (1)

For numerical and computational feasibility, ¢ is smoothed to

ws(0) = % <1+tanh g) , 0>0.

Resulting the (one insted of two) PDE

D0 — Fo 930 + Ste™" yp5(0) = 0. (2)
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Phase change materials (PCM), Stefan’s problem Phase change materials
Stefan’s problem

Enthalpy formulation
Reference solution

A few remarks:
® An exact analytical solution to the Stefan problem is possible, if the block of ice occupies a
semi-infinite region.
® In an actual melting problem, the material (ice) has a finite length.
® In the enthalpy formulation, the regularized problem (with ;) differs from the regular

problem (with ¢), since § does not necessarily tend to zero. As a result, the solutions could
also differ.

Consequences: We avoid using the exact solution, and instead generate a reference solution
specific to the regularized problem.

The problem is addressed numerically using the FD method: applying Crank-Nicolson's scheme
for time integration and central FD for spatial discretization. To solve the resulting nonlinear
problem, we employed the Newton-Raphson method.
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s Informed Neural Networks
Example

A neural network of n layers, is the composition of n functions €5 : x — £(x, 8x), 6«
denotes the set of parameters for the kth layer

ug(x) =L" 00" o0 l(x) (3)

The popular one: Multi Layer Perceptron with £*(x) = o* (W¥x + b¥)
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Neural networks

" Training/Learning *

Example

Physics Informed Neural Networks
Example

Neural networks, Physics Informed Neural Networks (PINNs)

A neural network with 4 layers, each containing one neuron

. N/

0L N £(0.5.y)
\ﬁz/,

La kieme couche cachée

—+ Forward propagation
<«—— Backward propagation

In other words
0 = argmin L(0,y,y). (4)
0

— Whak=1 4 pk
= o(2"), & =
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Neural networks
" Training/Learning

Neural networks, Physics Informed Neural Networks (PINNs)

Informed Neural Networks

A shallow neural network (with one hidden layer) can approximate any continuous
function with any given accuracy, provided it has a sufficient number of neurons (Hornik.
1991)

Approximation de z — sin(27z) sur [—1,1]

1.5
= Sin
1 == = Prediction
0 Training data
0.5 1
= 0.04
—0.5 1
—1.0 1
—1.5 T T T T T T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
xr
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Neural networks, Physics Informed Neural Networks (PINNs)
: $ b Example

Physics Informed Neural Networks
Example

Consider PDE

Oru+ Nu]l =0, T x Q,
u(t,x) = g(t, x), T x 09, (5)
u(0, x) = h(x), Q.

The solution u to the problem can be approximated with a neural network U := ug, by
minimizing with respect to parameters 6, the loss functions:

L =100+ Nu]ll 7 g, w, -

Lb = ||ﬁ_ g”TX@Q, Ny ?

Lo = 1|7~ hllg y, -

|flla,n = %Zszl |f(x«)|?, xx are randomly chosen uniformly on A.
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Physics Informed Neural Networks
Example

Neural networks, Physics Informed Neural Networks (PINNs)

Figure: Physics Informed Neural Network (PINN): a neural network is employed to predict the
solution u for the problem. Then, using automatic differentiation, the loss functions are
computed and minimized with respect to the network parameters.
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Neural networks
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ple

Physics Informed Neural Networks
Example

Consider Poisson’s problem in [0, 1]

—u"(x) = 4n” sin(27x), u(0) =
Let & be a shallow neural network of 10 neurons, with o = tanh. We set

L, = 115 k L ’A”(x,") + 4x? sin(27rx,")|2

a0 + 41, £ =L+ L

T

X 0 1000 2000 3000 4000
T

5000
Epoch

Figure: Approximation of wex(x) = sin(2mx), relative Ly error of O(10™*) at the end
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

PINNs for Stefan's problem

We will test the behavior of the method (PINNSs) for two cases:
® When the enthalpy jump is moderate e.g. Ste = 0.5.
® When the enthalpy jump is large e.g. Ste = 0.005.

Fo = 1072, § = 0.05 remain fixed. For both cases we use a neural network of two inputs
(t, x), six hidden layers of 20 neurons, with activation function o = tanh.

In the following, L,, Lo, and L represent the physics-informed loss (residual) terms,
corresponding to the PDE, the initial condition, and the boundary condition, respectively.

Reminder, the enthalpy is defined as
Hs = 0 + Ste™ " 05(0).

The PDE
010 — Fo 820 + Ste ™ 8;p5(6) = 0.
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Case of Ste 3
Case of Ste .005
Pointwise weighting

PINNs for Stefan's problem

Case of Ste = 0.5

t=0.05 t=0.53 t=1.00
1.0 - Loy - JEIEE -
Reference solution \ Reference solution \ Reference solution
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Figure: Solution of (2) by minimizing £ = Lo + L, + £, over 10° iterations of gradient descent
(Adam type). The relative Ly error at the end is of O(10~3).
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

PINNs for Stefan's problem

Case of Ste = 0.005

t=0.05 t =053 t =100
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Figure: Solution of (2) by minimizing £ = woLo + wpLp + wr L, over 10° iterations of gradient
descent (Adam type).

wo=wp=wr =1 | wp=100, wp, =w, =1 | dynamical weighting?
Rel. L, error 1.3x 107! 3.5 x 102 2.5 x 102

2see Sifan Wang et al. 2021.
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Case of Ste = 0.5
Case of Ste = 0.005

PINNs for Stefan's problem et aciziting

Pointwise weighting (still in the case Ste = 0.005)

Instead of using one weight for one loss function, we attribute to each training point (t,x) a
weight w(t, x) e.g.

~ . 2
(before) w Ly = — Z |3t9 ty, xk) — Fo 828(tx, xi) + Ste ™ rs (8) (tk, xk)
Ne =
N ~ . 2
(after) w, L] = Z m(wr (i, xk))? |0eB(te, xk) — Fo 020(te, xi) + Ste™" Deps (8) (1, x«) | »

" k=

with m is a strictly * non linear function. Same thing for woLo and wy,Lp. The problem is
formulated as follows:

(0%, wf,wp,wf) =min max L(O,wj,wp,wr) (6)

O wj,wp,wr
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Case of Ste = 0.5
Case of Ste = 0.
Pointwise weighting

PINNs for Stefan's problem
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Figure: Solution of (2) by minimizing £ = woL} + wpL} + w L] over 10° iterations of gradient
descent (Adam type). The relative Ly error at the end is 2.4 x 1072,
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4. Conclusion




Conclusion

Conclusion, Perspectives

® For Ste = 0.5 we can directly approximate the solution of the problem.

® For Ste = 0.005 "sharp solution” =- difficulties in the learning process, it is
necessary to balance the components of the loss function, globally or locally.

® Next step: coupling Stefan’s problem with the Navier-Stokes equations
(Navier-Stokes-Boussinesq).
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Conclusion

Thank you for your attention!
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