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Phase change materials
Stefan’s problem
Enthalpy formulation
Reference solution

The velocity field u in the liquid
part of a PCM heated vertically
from the right.

Navier-Stokes-Boussinesq equations

∇ · u = 0,

∂u

∂t
+ (u · ∇) u +∇p − 1

Re
∇2u − fB(θ)ey − A(θ)u = 0,

∂C θ

∂t
+∇ · (C θ u)−∇ ·

(
K

Re Pr
∇θ
)

+
∂C S(θ)

∂t
= 0.

Image ref: Gong et al., 2015
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Phase change materials
Stefan’s problem
Enthalpy formulation
Reference solution

A block of ice at a constant temperature1 θc is heated from the left side to a
temperature θh. The temperature θ of the system satisfies the following:

∂tθl − Fo ∂2
xθl = 0, T × Ωl ,

∂tθs − Fo ∂2
xθs = 0, T × Ωs ,

∂xθs − ∂xθl = Fo−1Ste−1 S ′(t), T , x = S(t).

Ωl Ωs

x = S(t)

1In a dimensionless setting!
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Phase change materials
Stefan’s problem
Enthalpy formulation
Reference solution

The enthalpy of the liquid-solid system is defined as

H = θ + Ste−1 ϕ(θ)

with ϕ representing the liquid fraction (Heaviside fct.). Substituting H into the heat
equation, leads to

∂tH − Fo ∂2
xθ = 0. (1)

For numerical and computational feasibility, ϕ is smoothed to

ϕδ(θ) =
1

2

(
1 + tanh

θ

δ

)
, δ > 0.

Resulting the (one insted of two) PDE

∂tθ − Fo ∂2
xθ + Ste−1 ∂tϕδ(θ) = 0. (2)
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Phase change materials
Stefan’s problem
Enthalpy formulation
Reference solution

A few remarks:

• An exact analytical solution to the Stefan problem is possible, if the block of ice occupies a
semi-infinite region.

• In an actual melting problem, the material (ice) has a finite length.

• In the enthalpy formulation, the regularized problem (with ϕδ) differs from the regular
problem (with ϕ), since δ does not necessarily tend to zero. As a result, the solutions could
also differ.

Consequences: We avoid using the exact solution, and instead generate a reference solution
specific to the regularized problem.

The problem is addressed numerically using the FD method: applying Crank-Nicolson’s scheme
for time integration and central FD for spatial discretization. To solve the resulting nonlinear
problem, we employed the Newton-Raphson method.
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Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example

A neural network of n layers, is the composition of n functions `k : x 7→ `(x , θk), θk
denotes the set of parameters for the kth layer

uθ(x) = `n ◦ `n−1 ◦ · · · ◦ `1(x) (3)

The popular one: Multi Layer Perceptron with `k(x) = σk
(
Wkx + bk

)
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Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example

A neural network with 4 layers, each containing one neuron

x a1

z1

θ σ

∂L
∂z1

θ

a2

z2

θ σ

∂L
∂z2

θ

a3

z3

θ σ

∂L
∂z3

θ

z4

θ σ

∂L
∂z4

θ

ŷ

∇θL

θ ← θ − η∇θL

y

L(θ, ŷ, y)

ak La kième couche cachée

Forward propagation

Backward propagation

In other words
θ? = arg min

θ
L(θ, ŷ , y). (4)

zk = Wkak−1 + bk

ak = σ(zk ), a0 = x
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Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example

A shallow neural network (with one hidden layer) can approximate any continuous
function with any given accuracy, provided it has a sufficient number of neurons (Hornik.
1991)
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Approximation de x 7→ sin(2πx) sur [−1, 1]

Sin

Prediction

Training data

B. Madir Rouen workshop 23-24 9 / 19



Phase change materials (PCM), Stefan’s problem
Neural networks, Physics Informed Neural Networks (PINNs)

PINNs for Stefan’s problem
Conclusion

Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example

Consider PDE
∂tu +N [u] = 0, T × Ω,

u(t, x) = g(t, x), T × ∂Ω,

u(0, x) = h(x), Ω.

(5)

The solution u to the problem can be approximated with a neural network û := uθ, by
minimizing with respect to parameters θ, the loss functions:

Lr = ‖∂t û +N [û ]‖T ×Ω,Nr
,

Lb = ‖û − g‖T ×∂Ω,Nb
,

L0 = ‖û − h‖Ω,N0
.

‖f ‖A,N = 1
N

∑N
k=1 |f (xk)|2, xk are randomly chosen uniformly on A.
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Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example
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Figure: Physics Informed Neural Network (PINN): a neural network is employed to predict the
solution u for the problem. Then, using automatic differentiation, the loss functions are
computed and minimized with respect to the network parameters.
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Neural networks
”Training/Learning“
Example
Physics Informed Neural Networks
Example

Consider Poisson’s problem in [0, 1]

−u′′(x) = 4π2 sin(2πx), u(0) = u(1) = 0.

Let û be a shallow neural network of 10 neurons, with σ = tanh. We set:

Lr = 1
15

∑15
k=1

∣∣û ′′(xk
r ) + 4π2 sin(2πxk

r )
∣∣2 ,

Lu = û(0)2 + û(1)2, L = Lr + Lu.
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Figure: Approximation of uex(x) = sin(2πx), relative L2 error of O(10−4) at the end.
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

We will test the behavior of the method (PINNs) for two cases:

• When the enthalpy jump is moderate e.g. Ste = 0.5.

• When the enthalpy jump is large e.g. Ste = 0.005.

Fo = 10−2, δ = 0.05 remain fixed. For both cases we use a neural network of two inputs
(t, x), six hidden layers of 20 neurons, with activation function σ = tanh.

In the following, Lr , L0, and Lb represent the physics-informed loss (residual) terms,
corresponding to the PDE, the initial condition, and the boundary condition, respectively.

Reminder, the enthalpy is defined as

Hδ = θ + Ste−1
ϕδ(θ).

The PDE
∂tθ − Fo ∂2

xθ + Ste−1
∂tϕδ(θ) = 0.
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

Case of Ste = 0.5

0.00 0.25 0.50 0.75 1.00

x

−0.5

0.0

0.5

1.0

θ(
t,
x

)

t = 0.05

Reference solution

PINN

0.00 0.25 0.50 0.75 1.00

x

−0.5

0.0

0.5

1.0

t = 0.53

Reference solution

PINN

0.00 0.25 0.50 0.75 1.00

x

−0.5

0.0

0.5

1.0

t = 1.00

Reference solution

PINN

Figure: Solution of (2) by minimizing L = L0 + Lb + Lr over 105 iterations of gradient descent
(Adam type). The relative L2 error at the end is of O(10−3).
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

Case of Ste = 0.005
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Figure: Solution of (2) by minimizing L = ω0L0 + ωbLb + ωrLr over 105 iterations of gradient
descent (Adam type).

ω0 = ωb = ωr = 1 ω0 = 100, ωb = ωr = 1 dynamical weighting2

Rel. L2 error 1.3× 10−1 3.5× 10−2 2.5× 10−2

2see Sifan Wang et al. 2021.
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

Pointwise weighting (still in the case Ste = 0.005)

Instead of using one weight for one loss function, we attribute to each training point (t, x) a
weight ω(t, x) e.g.

(before) ωrLr =
ωr

Nr

Nr∑
k=1

∣∣∣∂t θ̂(tk , xk )− Fo ∂2
x θ̂(tk , xk ) + Ste−1 ∂tϕδ(θ̂)(tk , xk )

∣∣∣2 ,
(after) ωrL′r =

1

Nr

Nr∑
k=1

m(ωr (tk , xk ))2
∣∣∣∂t θ̂(tk , xk )− Fo ∂2

x θ̂(tk , xk ) + Ste−1 ∂tϕδ(θ̂)(tk , xk )
∣∣∣2 ,

with m is a strictly ↗ non linear function. Same thing for ω0L0 and ωbLb. The problem is
formulated as follows:

(Θ?, ω?i , ω
?
b , ω

?
r ) = min

Θ
max

ωi ,ωb,ωr
L(Θ, ωi , ωb, ωr ) (6)
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Case of Ste = 0.5
Case of Ste = 0.005
Pointwise weighting

0.000 0.025 0.050 0.075 0.100

x

−0.5

0.0

0.5

1.0

θ(
t,
x

)

t = 0.05

0.000 0.025 0.050 0.075 0.100

x

−0.5

0.0

0.5

1.0

t = 0.53

Reference solution dynamical weighting Pointwise weighting

0.000 0.025 0.050 0.075 0.100

x

−0.5

0.0

0.5

1.0

t = 1.00

Figure: Solution of (2) by minimizing L = ω0L′0 + ωbL′b + ωrL′r over 105 iterations of gradient

descent (Adam type). The relative L2 error at the end is 2.4× 10−2.
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Conclusion, Perspectives

• For Ste = 0.5 we can directly approximate the solution of the problem.

• For Ste = 0.005 ”sharp solution” ⇒ difficulties in the learning process, it is
necessary to balance the components of the loss function, globally or locally.

• Next step: coupling Stefan’s problem with the Navier-Stokes equations
(Navier-Stokes-Boussinesq).
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Thank you for your attention!
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