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The Time Dependent Ginzburg Landau model (TDGL) Definitions

Non-dimensionalized Ginzburg-Landau Gibbs free energy1

G(ψ,A) =

∫
Ω

1
2
(
|ψ|2 − 1

)2︸ ︷︷ ︸
condensation energy

+

∣∣∣∣( 1
κ
∇− iA

)
ψ

∣∣∣∣2︸ ︷︷ ︸
kinetic energy

+ |curl A−H|2︸ ︷︷ ︸
magnetic energy

. (1)

Unknowns
ψ is the order parameter.
|ψ|2 corresponds to the density of superconducting charges.
We have |ψ| ≤ 1 (|ψ| = 0 corresponds to the normal state, |ψ| = 1 to the
pure superconducting state).
A is the magnetic vector potential.
φ is the electric potential.

Data
κ is the Ginzburg-Landau parameter.
H is the applied magnetic field.

1Ginzburg, V. L. and Landau, L. D. On the Theory of superconductivity. Zh. Eksp. Teor.
Fiz. 1950. 6 / 36
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The Time Dependent Ginzburg Landau model (TDGL) Definitions

Phase diagram of a superconducting material
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The Time Dependent Ginzburg Landau model (TDGL) Definitions

Non-dimensionalized TDGL system 1

The model reads
∂ψ

∂t
+ iκφψ = −1

2
∂G
∂ψ

(ψ,A) ,

∂A
∂t

+∇φ = −1
2
∂G
∂A

(ψ,A) ,

with boundary and initial conditions(
1
κ
∇− iA

)
ψ · n = 0 on ∂Ω,

curl A× n = H× n on ∂Ω.

ψ(x, 0) = ψ0(x) in Ω,

A(x, 0) = A0(x) in Ω.

→ In the numerics, the initial state is the pure superconducting state (ψ0 = 1,
A0 = 0).

→ If we take φ = 0 (the temporal gauge), we see that the TDGL system
corresponds to a usual descent gradient method.

1L.P. Gorkov and G.M. Eliashburg Generalization of the GL equations for non-stationary
problems in the case of alloys with paramagnetic impurities. Sov. Phys. (JETP). 1968.
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The Time Dependent Ginzburg Landau model (TDGL) Definitions

Computing the derivatives
∂G
∂ψ

,
∂G
∂A

we arrive at

(
∂

∂t
+ iκφ

)
ψ =

(
1
κ
∇− iA

)2

ψ + ψ − |ψ|2ψ in Ω,(
∂A
∂t

+∇φ
)

= − curl (curl A−H) +
1
2iκ

(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A in Ω,

with boundary and initial conditions(
1
κ
∇− iA

)
ψ · n = 0 on ∂Ω,

curl A× n = H× n on ∂Ω,

ψ(x, 0) = ψ0(x) in Ω,

A(x, 0) = A0(x) in Ω.
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The Time Dependent Ginzburg Landau model (TDGL) Definitions

Gauge choice

→ The solution of the TDGL is not unique.
→ A solution is defined up to a gauge transformation:

Gχ(ψ,A, φ) = (ζ,Q,Θ),

where ζ = ψeiκχ, Q = A +∇χ, Θ = φ− ∂χ

∂t
,

and χ is any function.

→ The most common choices of gauge are
φ = 0: temporal gauge,

div(A) = 0: Coulomb gauge,

φ = −div(A): Lorenz gauge.

=⇒ Linked with the ω-gauge 1:
φ = −ωdiv(A).

1Jacqueline Fleckinger-Pellé and Hans G. Kaper Gauges for the Ginzburg-Landau equations of
superconductivity. Proc. ICIAM 95. Z. Angew. Math. Mech. 1996.
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The Time Dependent Ginzburg Landau model (TDGL) State of art

11 / 36



The Time Dependent Ginzburg Landau model (TDGL) The mixed finite element method

What are mixed finite element methods?

They are also called duality methods.

They are used
→ to handle a constraint (e.g. div A = 0),
→ to compute physically relevant quantities (e.g. the magnetic field curl A

instead of only A),
→ to look for a weaker formulation when standard formulations fail due to a lack

of regularity of the solution.
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The Time Dependent Ginzburg Landau model (TDGL) The mixed finite element method

The Poisson equation on a L-shape domain

Consider we want to solve in 2D

curl curl A−∇ div A = f, in Ω, A · n = 0, curl A = 0, on ∂Ω. (2)

−∇ div A + curl curl A = −∆A is called the Hodge Laplacian.

The variational formulation is∫
Ω

curl A · curl v +

∫
Ω

div A div v =

∫
Ω

f · v. (3)

The Sobolev space to consider is: A ∈ H(curl) ∩ H0(div)

The field A is necessarily approximated by Lagrange finite elements (i.e.
continous).

→ Problem: this method will fail when the solution has a singularity (e.g. on a
non-convex domain).
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The Time Dependent Ginzburg Landau model (TDGL) The mixed finite element method

Instead we set γ = curl A and solve

curl γ −∇ div A = f, in Ω, A · n = 0, γ = 0, on ∂Ω. (4)

the variational formulation is∫
Ω

curl γ · v +

∫
Ω

div A div v =

∫
Ω

f · v, (5)∫
Ω

γχ =

∫
Ω

A · curlχ, (6)

The Sobolev space to consider is: (γ,A) ∈ H1
0 × H0(div)

γ is approximated by Lagrange finite element and A by Raviart-Thomas
finite elements.

→ This method will succeed and capture the singularity of the solution.
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The Time Dependent Ginzburg Landau model (TDGL) The mixed finite element method

Mixed FEM (left) and Lagrange FEM (right)
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The Time Dependent Ginzburg Landau model (TDGL) Variational formulation and discretization scheme

Variational formulation in 2D 1

∂ψ

∂t
− iκωdiv(A) = −

(
i

κ
∇+ A

)2

ψ + ψ − |ψ|2ψ, (7)

γ = curl A, (8)
∂A
∂t
− ω∇div(A) + curl γ =

1
2iκ

(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A + curlH. (9)

(
∂ψ

∂t
,w

)
− iκω ((div(A)ψ,w) = −

((
1
κ
∇− iA

)
ψ,

(
1
κ
∇− iA

)
w

)
(10)

+
((
1− |ψ|2

)
ψ,w

)
∀w ∈ H1(Ω),

(γ, χ)− (curlχ,A) = 0 ∀χ ∈ H1
0(Ω),(

∂A
∂t
, v
)

+ (curl γ, v) + (ω div A, div v)− 1
2iκ

(ψ∗∇ψ − ψ∇ψ∗, v) (11)

+ (|ψ|2A, v) = (curlH, v) ∀v ∈ H0(div,Ω)). (12)

1Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent
Ginzburg-Landau equations of superconductivity. Advances in Computational Mathematics.
2018.
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1Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent

Ginzburg-Landau equations of superconductivity. Advances in Computational Mathematics.
2018.
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The Time Dependent Ginzburg Landau model (TDGL) Variational formulation and discretization scheme

Discretization scheme in 2D 1

ψn+1 in V r
h (Lagrange FE),

γn+1 in V r+1
h ,

An+1 in
◦

RT h,r (Raviart-Thomas FE),

1
δt

(ψn+1,w) +
1
κ2 (∇ψn+1,∇w) =

1
δt

(ψn,w) +

(
i

(
κω +

1
κ

)
div(An)ψn,w

)
(13)

+

(
2
i

κ
ψnAn,∇w

)
+ 1− A2

n − |ψn|2 for all w in V r
h , (14)

(γn+1, χ)− (curlχ,An+1) = 0 for all χ in
◦
V

r+1

h , (15)
1
δt

(An+1, v) + (ωdiv(An+1), div(v)) + (curl γn+1, v) = (curlH, v) (16)

+
1
2iκ

(ψ∗n∇ψn − ψn∇ψ∗n , v)− (|ψn|2An, v) for all v in
◦

RT h,r . (17)

1Gao, H. and Sun, W. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the
dynamical Ginzburg–Landau equations of superconductivity. JCP. 2015.
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Convergence in 2 dimensions A benchmark in non convex geometry

Finite element of order r = 1 under the Lorenz gauge,
contours of |ψ| at t = 5000.

⇒ Movie
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Convergence in 2 dimensions A benchmark in non convex geometry

Finite element of order r = 1, contours of |ψ| at t = 5000
for different values of the ω parameter
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Convergence in 2 dimensions A benchmark in non convex geometry

Finite element of order r = 2, contours of |ψ| at t = 5000
for different values of the ω parameter
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Convergence in 2 dimensions A benchmark in non convex geometry

Finite element of order r = 2. Relative energy difference
|Gn+1 − Gn|/Gn (left) and characteristics of the vortex
patten (right).
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n
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10−1 21 16.4711
10−2 22 16.0959
10−3 21 16.4362
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0 21 16.4338
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Convergence in 2 dimensions A benchmark in non convex geometry

Configuration of lowest energy with 24 vortices (left).
Minimizer corresponding to a system of 24 point vortices 1

2(right)

wn(x1, . . . , xn) = −π
∑
i 6=j

log|xi − xj |

+Cπn
n∑

i=1

|xi |2.

1Gueron, S. and Shafrir, I. On a discrete variational problem involving interacting particles.
SIAM. 1999.

2Sandier, E. and Serfaty, S. Vortices in the magnetic Ginzburg-Landau model. Springer
Science. 2008. 23 / 36



Convergence in 2 dimensions Convergence analysis under the ω-gauge

Manufactured system

→ Extra source term.
→ An exact solution given by an analytic expression.
→ Not physically realistic, but allows to verify the computations.

∂ψ

∂t
− iκωdiv(A)−

(
1
κ
∇− iA

)2

ψ − ψ + |ψ|2ψ = g ,

∂A
∂t
− ω∇div(A) + curl curl A− 1

2iκ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = curlH + f.

ψ = exp(−t) (cos(πx) + i cos(πy)) , (18)

A =

(
exp(y − t) sin(πx)
exp(x − t) sin(πy)

)
, (19)

H = exp(x − t) sin(πy)− exp(y − t) sin(πx). (20)

24 / 36



Convergence in 2 dimensions Convergence analysis under the ω-gauge

Convergence orders with a graphical method
Theoretical error estimates for the Lorenz gauge 1

If the solution is regular enough, then

||ψN
h − ψN ||L2 = O(∆t + ∆x r+1),

||AN
h − AN ||L2 = O(∆t + ∆x r+1),

∆t
N∑

n=1

||γnh − curl An||2L2 = O(∆t2 + ∆x2r+2),

where r is the finite element order.

We set ∆x =
1
M
, ∆t =

1
M r+1

=⇒ error = O(∆t + ∆x r+1)

= O(
1

M r+1 ).

1Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent
Ginzburg-Landau equations of superconductivity. Adv Comput Math. 2018. 25 / 36
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Theoretical error estimates for the Lorenz gauge 1

If the solution is regular enough, then

||ψN
h − ψN ||L2 = O(∆t + ∆x r+1),

||AN
h − AN ||L2 = O(∆t + ∆x r+1),

∆t
N∑

n=1

||γnh − curl An||2L2 = O(∆t2 + ∆x2r+2),

where r is the finite element order.

We set ∆x =
1
M
, ∆t =

1
M r+1

=⇒ error = O(∆t + ∆x r+1)

= O(
1

M r+1 ).

1Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent
Ginzburg-Landau equations of superconductivity. Adv Comput Math. 2018. 25 / 36



Convergence in 2 dimensions Convergence analysis under the ω-gauge

2D manufactured solutions. Finite elements of order r = 1. Orders for the vector
potential A (left) and its divergence div A(right).
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2D manufactured solutions. Finite elements of order r = 1. Orders for ψ, curl A
and curl γ
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Convergence in 2 dimensions Convergence analysis under the ω-gauge

Conclusions

A tipping-point value for ω is observed and this value depends on the size of
the mesh.

Refining the mesh lead to a better convergence for each ω.
The orders of convergence of the magnetic field and the order parameter are
unaffected by the gauge.
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Convergence in 2 dimensions Convergence analysis under the ω-gauge

Pros and cons of the graphical method

Strength

It is accurate. We calculate the difference between the exact solution and
the computed one.

It is easy to interpret.

Problems

The relationship between ∆x and ∆t is imposed by the expected
convergence rate.
It is time consuming. The number of iterations is O(M r+1).

Solution

Richardson extrapolation method allows fast calculations and determines
the order completely a priori.
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Convergence in 2 dimensions Convergence analysis under the ω-gauge

Richardson extrapolation method

The number of iterations is fixed, as well as the size of the mesh.

The method is empiric, and a careful adjustment of ∆t is needed.
Principle: for a method of order p we have

uex = uh + Chp,

uex = u h
2

+ C

(
h

2

)p

,

uex = u h
4

+ C

(
h

4

)p

.

We deduce

p =
1

log 2
log

(
u h
2
− uh

u h
4
− u h

2

)
. (21)
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Convergence in 2 dimensions Convergence analysis under the ω-gauge

2D manufactured solutions. Finite elements of order r = 1. Orders computed with
the Richardson technique for a mesh size 1

M = 0.0625.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 0
Errψ 1.99594 1.99294 1.99083 1.98507 1.9919 1.99307
ErrA 1.9982 1.999 2.07292 2.55124 1.36199 1.0111
Errγ 2.00008 1.99683 1.99408 1.98795 1.99617 1.99735
Errcurl γ 2.00681 2.00412 2.00279 2.00014 2.00375 2.00425
Errdiv(A) 1.99169 2.00495 2.00072 1.67622 0.941629 -0.0230222

Comparison between the Richardson method and the graphical method for the
estimation of convergence orders for the vector potential A.

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 0
Richardson 1.9982 1.999 2.0729 2.5512 1.3619 1.0111
Graphic 1.9893 1.9897 2.1514 2.7523 1.6501 0.9982
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Results in 3 dimensions

A sphere with a geometrical defect

Parameters

H = (0, 0, 5),
κ = 10,
Number of nodes per unit ξ : 3,
∆t = 0.1,
Final time : T = 500.
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Conclusion

Conclusion

We analysed the link between the choice of a gauge and the behaviour of a
mixed scheme for the TDGL model.

We demonstrated the existence of a tipping-point value for the gauge
parameter.
We presented the Richardson method, a fast and reliable alternative to the
graphical method.
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