Influence of gauges in the time dependent Ginzburg-Landau model¹

Cyril Tain, Jean-Guy Caputo, Ionut Danaila

INSA de Rouen Normandie Université de Rouen Normandie

¹C. Tain, J-G. Caputo and I. Danaila, *Influence of gauges in the numerical simulation of the TDGL model.* On arxiv, 2024.

Sommaire

The Time Dependent Ginzburg Landau model (TDGL)

- Definitions
- State of art
- The mixed finite element method
- Variational formulation and discretization scheme

3 Convergence in 2 dimensions

- A benchmark in non convex geometry
- Convergence analysis under the ω-gauge

Results in 3 dimensions

Conclusion

Sommaire

1 Introduction

- Definitions
- State of art
- The mixed finite element method
- Variational formulation and discretization scheme
- - A benchmark in non convex geometry
 - Convergence analysis under the ω -gauge

What is superconductivity?

Superconductors (usually metallic compounds), when cooled down below a **critical temperature** (a few Kelvin for pure metals), exhibit two properties:

What is superconductivity?

Superconductors (usually metallic compounds), when cooled down below a **critical temperature** (a few Kelvin for pure metals), exhibit two properties:

Diamagnetism

What is superconductivity?

Superconductors (usually metallic compounds), when cooled down below a **critical temperature** (a few Kelvin for pure metals), exhibit two properties:

Diamagnetism

Perfect Conductivity

Sommaire

Introduction

2 The Time Dependent Ginzburg Landau model (TDGL)

- Definitions
- State of art
- The mixed finite element method
- Variational formulation and discretization scheme
- Convergence in 2 dimensions
 - A benchmark in non convex geometry
 - Convergence analysis under the ω -gauge
- Results in 3 dimensions
- 5 Conclusion

Non-dimensionalized Ginzburg-Landau Gibbs free energy¹

$$\mathcal{G}(\psi, \mathbf{A}) = \int_{\Omega} \underbrace{\frac{1}{2} \left(|\psi|^2 - 1 \right)^2}_{\text{condensation energy}} + \underbrace{\left| \left(\frac{1}{\kappa} \nabla - i \mathbf{A} \right) \psi \right|^2}_{\text{kinetic energy}} + \underbrace{\left| \underbrace{\text{curl } \mathbf{A} - \mathbf{H} \right|^2}_{\text{magnetic energy}}.$$
(1)

¹Ginzburg, V. L. and Landau, L. D. On the Theory of superconductivity. Zh. Eksp. Teor. 990 Fiz. 1950. 6/36

Non-dimensionalized Ginzburg-Landau Gibbs free energy¹

$$\mathcal{G}(\psi, \mathbf{A}) = \int_{\Omega} \underbrace{\frac{1}{2} \left(|\psi|^2 - 1 \right)^2}_{\text{condensation energy}} + \underbrace{\left| \left(\frac{1}{\kappa} \nabla - i\mathbf{A} \right) \psi \right|^2}_{\text{kinetic energy}} + \underbrace{\left| \underbrace{\operatorname{curl} \mathbf{A} - \mathbf{H} \right|^2}_{\text{magnetic energy}}.$$
(1)

Unknowns

- ψ is the order parameter. $|\psi|^2$ corresponds to the density of superconducting charges. We have $|\psi| \leq 1$ ($|\psi| = 0$ corresponds to the **normal** state, $|\psi| = 1$ to the pure **superconducting** state).
- A is the magnetic vector potential.
- ϕ is the electric potential.

¹Ginzburg, V. L. and Landau, L. D. On the Theory of superconductivity. Zh. Eksp. Teor. 900 Fiz. 1950. 6/36

Non-dimensionalized Ginzburg-Landau Gibbs free energy¹

$$\mathcal{G}(\psi, \mathbf{A}) = \int_{\Omega} \underbrace{\frac{1}{2} \left(|\psi|^2 - 1 \right)^2}_{\text{condensation energy}} + \underbrace{\left| \left(\frac{1}{\kappa} \nabla - i\mathbf{A} \right) \psi \right|^2}_{\text{kinetic energy}} + \underbrace{\left| \underbrace{\text{curl } \mathbf{A} - \mathbf{H} \right|^2}_{\text{magnetic energy}}.$$
(1)

Unknowns

- ψ is the order parameter. $|\psi|^2$ corresponds to the density of superconducting charges. We have $|\psi| \leq 1$ ($|\psi| = 0$ corresponds to the **normal** state, $|\psi| = 1$ to the pure **superconducting** state).
- A is the magnetic vector potential.
- ϕ is the electric potential.

Data

- κ is the Ginzburg-Landau parameter.
- **H** is the applied magnetic field.

¹Ginzburg, V. L. and Landau, L. D. On the Theory of superconductivity. Zh. Eksp. Teor. and Fiz. 1950.

Phase diagram of a superconducting material

The Time Dependent Ginzburg Landau model (TDGL) Definitions

Non-dimensionalized TDGL system ¹

The model reads

$$\begin{split} &\frac{\partial \psi}{\partial t} + i\kappa\phi\psi = -\frac{1}{2}\frac{\partial \mathcal{G}}{\partial \psi}\left(\psi,\mathbf{A}\right),\\ &\frac{\partial \mathbf{A}}{\partial t} + \nabla\phi = -\frac{1}{2}\frac{\partial \mathcal{G}}{\partial \mathbf{A}}\left(\psi,\mathbf{A}\right), \end{split}$$

¹L.P. Gorkov and G.M. Eliashburg *Generalization of the GL equations for non-stationary* problems in the case of alloys with paramagnetic impurities. Sov. Phys. (JETP). 1968.

The Time Dependent Ginzburg Landau model (TDGL) Defi

Definitions

Non-dimensionalized TDGL system ¹

The model reads

11

$$\begin{split} &\frac{\partial \psi}{\partial t} + i\kappa \phi \psi = -\frac{1}{2} \frac{\partial \mathcal{G}}{\partial \psi} \left(\psi, \mathbf{A} \right), \\ &\frac{\partial \mathbf{A}}{\partial t} + \nabla \phi = -\frac{1}{2} \frac{\partial \mathcal{G}}{\partial \mathbf{A}} \left(\psi, \mathbf{A} \right), \end{split}$$

with boundary and initial conditions

$$\begin{pmatrix} \frac{1}{\kappa} \nabla - i\mathbf{A} \end{pmatrix} \psi \cdot \mathbf{n} = 0 \text{ on } \partial\Omega, \qquad \qquad \psi(\mathbf{x}, 0) = \psi_0(\mathbf{x}) \text{ in } \Omega, \\ \mathbf{curl } \mathbf{A} \times \mathbf{n} = \mathbf{H} \times \mathbf{n} \text{ on } \partial\Omega. \qquad \qquad \mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x}) \text{ in } \Omega.$$

¹L.P. Gorkov and G.M. Eliashburg *Generalization of the GL equations for non-stationary* problems in the case of alloys with paramagnetic impurities. Sov.=Phys=(JETP). 1968.

Non-dimensionalized TDGL system ¹

The model reads

$$\begin{split} &\frac{\partial \psi}{\partial t} + i\kappa \phi \psi = -\frac{1}{2} \frac{\partial \mathcal{G}}{\partial \psi} \left(\psi, \mathbf{A} \right), \\ &\frac{\partial \mathbf{A}}{\partial t} + \nabla \phi = -\frac{1}{2} \frac{\partial \mathcal{G}}{\partial \mathbf{A}} \left(\psi, \mathbf{A} \right), \end{split}$$

with boundary and initial conditions

$$\begin{pmatrix} \frac{1}{\kappa} \nabla - i\mathbf{A} \end{pmatrix} \psi \cdot \mathbf{n} = 0 \text{ on } \partial\Omega, \qquad \qquad \psi(\mathbf{x}, 0) = \psi_0(\mathbf{x}) \text{ in } \Omega, \\ \mathbf{curl} \mathbf{A} \times \mathbf{n} = \mathbf{H} \times \mathbf{n} \text{ on } \partial\Omega. \qquad \qquad \mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x}) \text{ in } \Omega.$$

 $\rightarrow\,$ In the numerics, the initial state is the pure superconducting state ($\psi_0=$ 1, ${\bf A}_0={\bf 0}).$

 $\rightarrow\,$ If we take $\phi=$ 0 (the temporal gauge), we see that the TDGL system corresponds to a usual descent gradient method.

¹L.P. Gorkov and G.M. Eliashburg *Generalization of the GL equations for non-stationary* problems in the case of alloys with paramagnetic impurities. Sov...Phys. (JETP). 1968.

Computing the derivatives $\frac{\partial \mathcal{G}}{\partial \psi}$, $\frac{\partial \mathcal{G}}{\partial \mathbf{A}}$ we arrive at

$$\begin{split} \left(\frac{\partial}{\partial t} + i\kappa\phi\right)\psi &= \left(\frac{1}{\kappa}\nabla - i\mathbf{A}\right)^2\psi + \psi - |\psi|^2\psi \text{ in }\Omega,\\ \left(\frac{\partial\mathbf{A}}{\partial t} + \nabla\phi\right) &= -\operatorname{curl}\left(\operatorname{curl}\mathbf{A} - \mathbf{H}\right) + \frac{1}{2i\kappa}(\psi^*\nabla\psi - \psi\nabla\psi^*) - |\psi|^2\mathbf{A} \text{ in }\Omega, \end{split}$$

with boundary and initial conditions

$$\begin{pmatrix} \frac{1}{\kappa} \nabla - i\mathbf{A} \end{pmatrix} \psi \cdot \mathbf{n} = 0 \text{ on } \partial\Omega, \qquad \qquad \psi(\mathbf{x}, 0) = \psi_0(\mathbf{x}) \text{ in } \Omega, \\ \mathbf{curl} \mathbf{A} \times \mathbf{n} = \mathbf{H} \times \mathbf{n} \text{ on } \partial\Omega, \qquad \qquad \mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x}) \text{ in } \Omega.$$

Gauge choice

- $\rightarrow~$ The solution of the TDGL is not unique.
- $\rightarrow\,$ A solution is defined up to a gauge transformation:

$$\begin{split} & \mathcal{G}_{\chi}(\psi,\mathbf{A},\phi) = (\zeta,\mathbf{Q},\Theta),\\ & \text{where } \zeta = \psi \mathrm{e}^{i\kappa\chi}, \quad \mathbf{Q} = \mathbf{A} + \nabla\chi, \quad \Theta = \phi - \frac{\partial\chi}{\partial t},\\ & \text{and } \chi \text{ is any function.} \end{split}$$

¹ Jacqueline Fleckinger-Pellé and Hans G. Kaper *Gauges for the Ginzburg-Landau equations of superconductivity.* Proc. ICIAM 95. Z. Angew. Math. Mech. 1996. $(\bigcirc) (\odot) (\odot) (\bigcirc) (\odot) ($

Gauge choice

- $\rightarrow~$ The solution of the TDGL is not unique.
- $\rightarrow\,$ A solution is defined up to a gauge transformation:

$$\begin{split} & \mathcal{G}_{\chi}(\psi,\mathbf{A},\phi) = (\zeta,\mathbf{Q},\Theta),\\ & \text{where } \zeta = \psi \mathrm{e}^{i\kappa\chi}, \quad \mathbf{Q} = \mathbf{A} + \nabla\chi, \quad \Theta = \phi - \frac{\partial\chi}{\partial t},\\ & \text{and } \chi \text{ is any function.} \end{split}$$

- $\rightarrow\,$ The most common choices of gauge are
 - $\phi = 0$: temporal gauge,
 - div(A) = 0: Coulomb gauge,
 - $\phi = -\operatorname{div}(\mathbf{A})$: Lorenz gauge.

¹Jacqueline Fleckinger-Pellé and Hans G. Kaper *Gauges for the Ginzburg-Landau equations of superconductivity.* Proc. ICIAM 95. Z. Angew. Math. Mech. 1996.

Gauge choice

- $\rightarrow~$ The solution of the TDGL is not unique.
- $\rightarrow\,$ A solution is defined up to a gauge transformation:

$$\begin{split} & \mathcal{G}_{\chi}(\psi,\mathbf{A},\phi) = (\zeta,\mathbf{Q},\Theta),\\ & \text{where } \zeta = \psi \mathrm{e}^{i\kappa\chi}, \quad \mathbf{Q} = \mathbf{A} + \nabla\chi, \quad \Theta = \phi - \frac{\partial\chi}{\partial t},\\ & \text{and } \chi \text{ is any function.} \end{split}$$

$\rightarrow\,$ The most common choices of gauge are

• $\phi = 0$: temporal gauge,

• $\phi = -\operatorname{div}(\mathbf{A})$: Lorenz gauge.

 \implies

Linked with the ω -gauge ¹: $\phi = -\omega \operatorname{div}(\mathbf{A})$.

¹Jacqueline Fleckinger-Pellé and Hans G. Kaper *Gauges for the Ginzburg-Landau equations of superconductivity.* Proc. ICIAM 95. Z. Angew. Math. Mech. 1996.

୬ ୯. ୯ 11 / 36

• They are also called **duality methods**.

- They are also called **duality methods**.
- They are used
 - $\rightarrow\,$ to handle a constraint (e.g. div ${\bf A}=0),$

- They are also called **duality methods**.
- They are used
 - \rightarrow to handle a constraint (e.g. div **A** = 0),
 - $\rightarrow\,$ to compute physically relevant quantities (e.g. the magnetic field curl A instead of only A),

- They are also called **duality methods**.
- They are used
 - \rightarrow to handle a constraint (e.g. div **A** = 0),
 - $\rightarrow\,$ to compute physically relevant quantities (e.g. the magnetic field curl A instead of only A),
 - $\rightarrow\,$ to look for a weaker formulation when standard formulations fail due to a lack of regularity of the solution.

The Poisson equation on a L-shape domain

Consider we want to solve in 2D

curl curl $\mathbf{A} - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, curl $\mathbf{A} = 0$, on $\partial \Omega$. (2)

• $-\nabla \operatorname{div} \mathbf{A} + \operatorname{curl} \operatorname{curl} \mathbf{A} = -\Delta \mathbf{A}$ is called the Hodge Laplacian.

The Poisson equation on a L-shape domain

Consider we want to solve in 2D

curl curl $\mathbf{A} - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, curl $\mathbf{A} = 0$, on $\partial \Omega$. (2)

- $-\nabla \operatorname{div} \mathbf{A} + \operatorname{curl} \operatorname{curl} \mathbf{A} = -\Delta \mathbf{A}$ is called the Hodge Laplacian.
- The variational formulation is

$$\int_{\Omega} \operatorname{curl} \mathbf{A} \cdot \operatorname{curl} \mathbf{v} + \int_{\Omega} \operatorname{div} \mathbf{A} \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}. \tag{3}$$

 \bullet The Sobolev space to consider is: $\textbf{A}\in H(\mbox{curl})\cap H_0(\mbox{div})$

<ロト < 団ト < 臣 > < 臣 > 三 の Q (~ 13 / 36

The Poisson equation on a L-shape domain

Consider we want to solve in 2D

curl curl $\mathbf{A} - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, curl $\mathbf{A} = 0$, on $\partial \Omega$. (2)

- $-\nabla \operatorname{div} \mathbf{A} + \operatorname{curl} \operatorname{curl} \mathbf{A} = -\Delta \mathbf{A}$ is called the Hodge Laplacian.
- The variational formulation is

$$\int_{\Omega} \operatorname{curl} \mathbf{A} \cdot \operatorname{curl} \mathbf{v} + \int_{\Omega} \operatorname{div} \mathbf{A} \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}.$$
(3)

- \bullet The Sobolev space to consider is: $\textbf{A}\in H(\mbox{curl})\cap H_0(\mbox{div})$
- The field **A** is necessarily approximated by Lagrange finite elements (i.e. continous).

 \rightarrow *Problem:* this method will fail when the solution has a singularity (e.g. on a non-convex domain).

Instead we set $\gamma = \operatorname{curl} \mathbf{A}$ and solve

curl
$$\gamma - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$$
, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, $\gamma = 0$, on $\partial \Omega$. (4)

Instead we set $\gamma = \operatorname{curl} \mathbf{A}$ and solve

curl
$$\gamma - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$$
, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, $\gamma = 0$, on $\partial \Omega$. (4)

• the variational formulation is

$$\int_{\Omega} \operatorname{curl} \gamma \cdot \mathbf{v} + \int_{\Omega} \operatorname{div} \mathbf{A} \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \qquad (5)$$
$$\int_{\Omega} \gamma \chi = \int_{\Omega} \mathbf{A} \cdot \operatorname{curl} \chi, \qquad (6)$$

• The Sobolev space to consider is: $(\gamma, \mathbf{A}) \in \mathsf{H}^1_0 imes \mathsf{H}_0(\mathsf{div})$

<ロト < 団ト < 臣 > < 臣 > 三 の Q (~ 14/36) Instead we set $\gamma = \operatorname{curl} \mathbf{A}$ and solve

curl
$$\gamma - \nabla \operatorname{div} \mathbf{A} = \mathbf{f}$$
, in Ω , $\mathbf{A} \cdot \mathbf{n} = 0$, $\gamma = 0$, on $\partial \Omega$. (4)

• the variational formulation is

$$\int_{\Omega} \operatorname{curl} \gamma \cdot \mathbf{v} + \int_{\Omega} \operatorname{div} \mathbf{A} \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \qquad (5)$$
$$\int_{\Omega} \gamma \chi = \int_{\Omega} \mathbf{A} \cdot \operatorname{curl} \chi, \qquad (6)$$

- The Sobolev space to consider is: $(\gamma, \mathbf{A}) \in H_0^1 \times H_0(div)$
- γ is approximated by Lagrange finite element and ${\bf A}$ by Raviart-Thomas finite elements.
- \rightarrow This method will succeed and capture the singularity of the solution.

The mixed finite element method

Mixed FEM (left) and Lagrange FEM (right)

・ロト・白 ト・モー・ モー・シャク

Variational formulation in 2D ¹

$$\frac{\partial \psi}{\partial t} - i\kappa \omega \operatorname{div}(\mathbf{A}) = -\left(\frac{i}{\kappa} \nabla + \mathbf{A}\right)^2 \psi + \psi - |\psi|^2 \psi, \tag{7}$$

$$\gamma = \operatorname{curl} \mathbf{A},$$
 (8)

$$\frac{\partial \mathbf{A}}{\partial t} - \omega \nabla \operatorname{div}(\mathbf{A}) + \operatorname{curl} \gamma = \frac{1}{2i\kappa} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) - |\psi|^2 \mathbf{A} + \operatorname{curl} H.$$
(9)

¹Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Advances in Computational Mathematics. 2018.

Variational formulation in 2D ¹

$$\frac{\partial \psi}{\partial t} - i\kappa \omega \mathsf{div}(\mathbf{A}) = -\left(\frac{i}{\kappa} \nabla + \mathbf{A}\right)^2 \psi + \psi - |\psi|^2 \psi, \tag{7}$$

$$\gamma = \operatorname{curl} \mathbf{A},\tag{8}$$

$$\frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\omega} \nabla \operatorname{div}(\mathbf{A}) + \operatorname{curl} \gamma = \frac{1}{2i\kappa} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) - |\psi|^2 \mathbf{A} + \operatorname{curl} H.$$
(9)

$$\begin{pmatrix} \frac{\partial \psi}{\partial t}, w \end{pmatrix} - i\kappa\omega \left((\operatorname{div}(\mathbf{A})\psi, w \right) = -\left(\left(\frac{1}{\kappa} \nabla - i\mathbf{A} \right) \psi, \left(\frac{1}{\kappa} \nabla - i\mathbf{A} \right) w \right) \quad (10)$$

$$+ \left(\left(1 - |\psi|^2 \right) \psi, w \right) \quad \forall w \in \mathcal{H}^1(\Omega),$$

$$(\gamma, \chi) - (\operatorname{curl} \chi, \mathbf{A}) = 0 \quad \forall \chi \in \mathsf{H}^1_0(\Omega),$$

$$\begin{pmatrix} \frac{\partial \mathbf{A}}{\partial t}, \mathbf{v} \end{pmatrix} + (\operatorname{curl} \gamma, \mathbf{v}) + (\omega \operatorname{div} \mathbf{A}, \operatorname{div} \mathbf{v}) - \frac{1}{2i\kappa} \left(\psi^* \nabla \psi - \psi \nabla \psi^*, \mathbf{v} \right) \quad (11)$$

$$+ \left(|\psi|^2 \mathbf{A}, \mathbf{v} \right) = (\operatorname{curl} H, \mathbf{v}) \quad \forall \mathbf{v} \in \mathsf{H}_0(\operatorname{div}, \Omega)). \quad (12)$$

¹Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Advances in Computational Mathematics. 2018.

16/36

Discretization scheme in 2D 1

- ψ^{n+1} in V_h^r (Lagrange FE),
- γ^{n+1} in V_h^{n+1} , \mathbf{A}^{n+1} in $\stackrel{\circ}{RT}_{h,r}$ (Raviart-Thomas FE),

$$\frac{1}{\delta t}(\psi^{n+1},w) + \frac{1}{\kappa^2}(\nabla\psi^{n+1},\nabla w) = \frac{1}{\delta t}(\psi^n,w) + \left(i\left(\kappa\omega + \frac{1}{\kappa}\right)\operatorname{div}(\mathbf{A}^n)\psi^n,w\right)$$
(13)

$$+\left(2\frac{i}{\kappa}\psi^{n}\mathbf{A}^{n},\nabla w\right)+1-\mathbf{A}_{n}^{2}-|\psi^{n}|^{2} \text{ for all } w \text{ in } V_{h}^{r},$$
(14)

$$(\gamma^{n+1},\chi) - (\operatorname{curl}\chi, \mathbf{A}^{n+1}) = 0 \text{ for all } \chi \text{ in } \overset{\circ}{V}_{h}^{r+1},$$
(15)

$$\frac{1}{\delta t}(\mathbf{A}^{n+1}, \mathbf{v}) + (\omega \operatorname{div}(\mathbf{A}^{n+1}), \operatorname{div}(\mathbf{v})) + (\operatorname{curl} \gamma^{n+1}, \mathbf{v}) = (\operatorname{curl} H, \mathbf{v})$$
(16)

$$+\frac{1}{2i\kappa}\left(\psi_{n}^{*}\nabla\psi_{n}-\psi_{n}\nabla\psi_{n}^{*},\mathbf{v}\right)-\left(|\psi^{n}|^{2}\mathbf{A}^{n},\mathbf{v}\right)\text{ for all }\mathbf{v}\text{ in }\overset{\circ}{RT}_{h,r}.$$
(17)

¹Gao, H. and Sun, W. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. JCP:: 2015. - 34

Sommaire

- Introduction
- 2 The Time Dependent Ginzburg Landau model (TDGL)
 - Definitions
 - State of art
 - The mixed finite element method
 - Variational formulation and discretization scheme
- 3 Convergence in 2 dimensions
 - A benchmark in non convex geometry
 - \bullet Convergence analysis under the $\omega\textsc{-}\mathsf{gauge}$
 - Results in 3 dimensions
- 5 Conclusion

Finite element of order r = 1 under the Lorenz gauge, contours of $|\psi|$ at t = 5000.

 \Rightarrow Movie

Finite element of order r = 1, contours of $|\psi|$ at t = 5000 for different values of the ω parameter

20 / 36

Finite element of order r = 2, contours of $|\psi|$ at t = 5000 for different values of the ω parameter

21/36

Finite element of order r = 2. Relative energy difference $|\mathcal{G}_{n+1} - \mathcal{G}_n|/\mathcal{G}_n$ (left) and characteristics of the vortex patten (right).

Configuration of lowest energy with 24 vortices (left). Minimizer corresponding to a system of 24 point vortices 1 ²(right)

¹Gueron, S. and Shafrir, I. On a discrete variational problem involving interacting particles. SIAM. 1999.

²Sandier, E. and Serfaty, S. Vortices in the magnetic Ginzburg-Landau model. Springer Science. 2008. 23/36

Manufactured system

- $\rightarrow~$ Extra source term.
- $\rightarrow\,$ An exact solution given by an analytic expression.
- $\rightarrow\,$ Not physically realistic, but allows to verify the computations.

$$\begin{split} &\frac{\partial \psi}{\partial t} - i\kappa\omega \mathsf{div}(\mathbf{A}) - \left(\frac{1}{\kappa}\nabla - i\mathbf{A}\right)^2 \psi - \psi + |\psi|^2 \psi = g, \\ &\frac{\partial \mathbf{A}}{\partial t} - \omega\nabla \mathsf{div}(\mathbf{A}) + \mathbf{curl} \, \mathbf{curl} \, \mathbf{A} - \frac{1}{2i\kappa} \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right) + |\psi|^2 \mathbf{A} = \mathbf{curl} \, H + \mathbf{f}. \end{split}$$

$$\psi = \exp(-t)\left(\cos(\pi x) + i\cos(\pi y)\right),\tag{18}$$

$$A = \begin{pmatrix} \exp(y-t)\sin(\pi x) \\ \exp(x-t)\sin(\pi y) \end{pmatrix},$$
(19)

$$H = \exp(x - t)\sin(\pi y) - \exp(y - t)\sin(\pi x).$$
(20)

24 / 36

Convergence orders with a graphical method

Theoretical error estimates for the Lorenz gauge ¹

If the solution is regular enough, then

$$\begin{split} ||\psi_{h}^{N} - \psi^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ ||\mathbf{A}_{h}^{N} - \mathbf{A}^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ \Delta t \sum_{n=1}^{N} ||\gamma_{h}^{n} - \operatorname{curl} \mathbf{A}^{n}||_{L_{2}}^{2} &= O(\Delta t^{2} + \Delta x^{2r+2}), \end{split}$$

where r is the finite element order.

¹Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent occ Ginzburg-Landau equations of superconductivity. Adv Comput Math. 2018. ²⁵/³⁶

Convergence orders with a graphical method

Theoretical error estimates for the Lorenz gauge ¹

If the solution is regular enough, then

$$\begin{split} ||\psi_{h}^{N} - \psi^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ ||\mathbf{A}_{h}^{N} - \mathbf{A}^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ \Delta t \sum_{n=1}^{N} ||\gamma_{h}^{n} - \operatorname{curl} \mathbf{A}^{n}||_{L_{2}}^{2} &= O(\Delta t^{2} + \Delta x^{2r+2}), \end{split}$$

where r is the finite element order.

We set
$$\Delta x = rac{1}{M}, \quad \Delta t = rac{1}{M^{r+1}}$$

¹Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent of Ginzburg-Landau equations of superconductivity. Adv Comput Math. 2018. ²⁵/³⁶

Convergence orders with a graphical method

Theoretical error estimates for the Lorenz gauge ¹

If the solution is regular enough, then

$$\begin{split} ||\psi_{h}^{N} - \psi^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ ||\mathbf{A}_{h}^{N} - \mathbf{A}^{N}||_{L_{2}} &= O(\Delta t + \Delta x^{r+1}), \\ \Delta t \sum_{n=1}^{N} ||\gamma_{h}^{n} - \operatorname{curl} \mathbf{A}^{n}||_{L_{2}}^{2} &= O(\Delta t^{2} + \Delta x^{2r+2}), \end{split}$$

where r is the finite element order.

We set
$$\Delta x = \frac{1}{M}$$
, $\Delta t = \frac{1}{M^{r+1}}$
 \implies error $= O(\Delta t + \Delta x^{r+1})$
 $= O(\frac{1}{M^{r+1}}).$

¹Gao, H. and Sun, W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent occ Ginzburg-Landau equations of superconductivity. Adv Comput Math. 2018. ^{25/36}

2D manufactured solutions. Finite elements of order r = 1. Orders for the vector potential **A** (left) and its divergence div **A**(right).

2D manufactured solutions. Finite elements of order ${\rm r}=$ 1. Orders for $\psi,$ curl ${\rm A}$ and ${\rm curl}\,\gamma$

 \bullet A tipping-point value for ω is observed and this value depends on the size of the mesh.

- $\bullet\,$ A tipping-point value for ω is observed and this value depends on the size of the mesh.
- Refining the mesh lead to a better convergence for each ω .

- A tipping-point value for ω is observed and this value depends on the size of the mesh.
- Refining the mesh lead to a better convergence for each ω .
- The orders of convergence of the magnetic field and the order parameter are unaffected by the gauge.

Strength

• It is **accurate**. We calculate the difference between the exact solution and the computed one.

Strength

- It is **accurate**. We calculate the difference between the exact solution and the computed one.
- It is easy to interpret.

Strength

- It is **accurate**. We calculate the difference between the exact solution and the computed one.
- It is easy to interpret.

Problems

• The relationship between Δx and Δt is imposed by the expected convergence rate.

Strength

- It is **accurate**. We calculate the difference between the exact solution and the computed one.
- It is easy to interpret.

Problems

- The relationship between Δx and Δt is imposed by the expected convergence rate.
- It is time consuming. The number of iterations is $O(M^{r+1})$.

Strength

- It is **accurate**. We calculate the difference between the exact solution and the computed one.
- It is easy to interpret.

Problems

- The relationship between Δx and Δt is imposed by the expected convergence rate.
- It is time consuming. The number of iterations is $O(M^{r+1})$.

Solution

• **Richardson extrapolation** method allows fast calculations and determines the order completely a priori.

• The number of iterations is fixed, as well as the size of the mesh.

- The number of iterations is fixed, as well as the size of the mesh.
- The method is empiric, and a careful adjustment of Δt is needed.

- The number of iterations is fixed, as well as the size of the mesh.
- The method is empiric, and a careful adjustment of Δt is needed.
- **Principle:** for a method of order *p* we have

$$\begin{split} u_{\text{ex}} &= u_h + Ch^p, \\ u_{\text{ex}} &= u_{\frac{h}{2}} + C\left(\frac{h}{2}\right)^p, \\ u_{\text{ex}} &= u_{\frac{h}{4}} + C\left(\frac{h}{4}\right)^p. \end{split}$$

30 / 36

イロト イポト イヨト イヨト

- The number of iterations is fixed, as well as the size of the mesh.
- The method is empiric, and a careful adjustment of Δt is needed.
- **Principle:** for a method of order *p* we have

$$u_{ex} = u_h + Ch^p,$$

$$u_{ex} = u_{\frac{h}{2}} + C\left(\frac{h}{2}\right)^p,$$

$$u_{ex} = u_{\frac{h}{4}} + C\left(\frac{h}{4}\right)^p.$$

We deduce

$$p = \frac{1}{\log 2} \log \left(\frac{u_{\frac{h}{2}} - u_{h}}{u_{\frac{h}{4}} - u_{\frac{h}{2}}} \right).$$
(21)

2D manufactured solutions. Finite elements of order r = 1. Orders computed with the Richardson technique for a mesh size $\frac{1}{M} = 0.0625$.

	$\omega = 1$	$\omega = 10^{-1}$	$\omega = 10^{-2}$	$\omega = 10^{-3}$	$\omega = 10^{-4}$	$\omega = 0$
Err_ψ	1.99594	1.99294	1.99083	1.98507	1.9919	1.99307
Err _A	1.9982	1.999	2.07292	2.55124	1.36199	1.0111
Err_{γ}	2.00008	1.99683	1.99408	1.98795	1.99617	1.99735
$\operatorname{Err}_{\operatorname{curl}\gamma}$	2.00681	2.00412	2.00279	2.00014	2.00375	2.00425
$\operatorname{Err}_{\operatorname{div}(A)}$	1.99169	2.00495	2.00072	1.67622	0.941629	-0.0230222

Comparison between the Richardson method and the graphical method for the estimation of convergence orders for the vector potential **A**.

	$\omega = 1$	$\omega = 10^{-1}$	$\omega = 10^{-2}$	$\omega = 10^{-3}$	$\omega = 10^{-4}$	$\omega = 0$
Richardson	1.9982	1.999	2.0729	2.5512	1.3619	1.0111
Graphic	1.9893	1.9897	2.1514	2.7523	1.6501	0.9982

Sommaire

- Introduction
- 2 The Time Dependent Ginzburg Landau model (TDGL)
 - Definitions
 - State of art
 - The mixed finite element method
 - Variational formulation and discretization scheme
- 3 Convergence in 2 dimensions
 - A benchmark in non convex geometry
 - Convergence analysis under the ω -gauge

4 Results in 3 dimensions

A sphere with a geometrical defect

Parameters

- **H** = (0, 0, 5),
- $\kappa = 10$,
- Number of nodes per unit ξ : 3,
- $\Delta t = 0.1$,
- Final time : T = 500.

э

Sommaire

- Introduction
- 2 The Time Dependent Ginzburg Landau model (TDGL)
 - Definitions
 - State of art
 - The mixed finite element method
 - Variational formulation and discretization scheme
- 3 Convergence in 2 dimensions
 - A benchmark in non convex geometry
 - Convergence analysis under the ω -gauge
 - Results in 3 dimensions

• We analysed the link between the choice of a gauge and the behaviour of a mixed scheme for the TDGL model.

- We analysed the link between the choice of a gauge and the behaviour of a mixed scheme for the TDGL model.
- We demonstrated the existence of a tipping-point value for the gauge parameter.

- We analysed the link between the choice of a gauge and the behaviour of a mixed scheme for the TDGL model.
- We demonstrated the existence of a tipping-point value for the gauge parameter.
- We presented the Richardson method, a fast and reliable alternative to the graphical method.

References

- Du, Q., Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity, Computers Math. Applic. 27(12), 119-133 (1994),
- Gao, H., Li, B., Sun, W., *Optimal error estimates of linearized Crank-Nicolson Galerkin fems for the time-dependent Ginzburg-Landau equations in superconductivity*, SIAM Journal on Numerical Analysis 52(3), 1183–1202 (2014),
- Alstrom, T.S., Sorensen, M.P., Pedersen, N.F., Madsen, S., *Magnetic flux lines in complex geometry type II superconductors studied by the time dependent Ginzburg-Landau equation.*, Acta Applicandae Mathematicae 115 (1), 63–74 (2011),
- Hong, Q., Ma, L., Xu, J. and Chen, L., *An efficient iterative method for dynamical Ginzburg-Landau equations*, Journal of Computational Physics 474, 111794 (2023),
- Gao, H. and Sun, W., A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge, SIAM Journal on Scientific Computing 38(3), A1339-A1357 (2016),
- Hecht, F. New development in FreeFem++, J. Numer. Math. (2012).