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Talk outline I

Talk is about 4 publications with R. Pandit’s Bangalore group

Formation of compact objects at finite temperatures in a dark-matter-candidate
self-gravitating bosonic system, PHYSICAL REVIEW RESEARCH 3, L022016 (2021)

Rotating self-gravitating Bose-Einstein condensates with a crust: A model for pulsar
glitches, PHYSICAL REVIEW RESEARCH 4, 013026 (2022)

Gravity- and temperature-driven phase transitions in a model for collapsed axionic
condensates, PHYSICAL REVIEW D 109, 063009 (2024)

Neutron-superfluid vortices and proton-superconductor flux tubes: Development of
a minimal model for pulsar glitches, arXiv:2405.12127, 2024



Talk outline I

Talk is about Self gravitating Bose Einstein Candidates

Gross-Pitaevskii Equation with Newtonian gravitational potential generated by the
BEC density

With rotation
With finite temperature modelled by classical field

Also (in some cases) there is (beside the superfluid) a superconductor with magnetic
field

Obviously in 40 minutes | won’t have time to go into details of 4 publications

I'll try to give a view of the main physical ingredients and results



Talk outline III

Physical interest Self gravitating Bose Einstein Candidates

Can describe bosons stars: gravitational collapse, steady states, rotation, finite
temperature effects, phase transitions

With rotation AND a crust: a model for pulsar glitches

Adding a superconductor: a more ‘realistic’ model of pulsar glitches
In what follows:

1: Physical motivations

2: Equations

3: summary of results



Physical motivations |

Basic gravitating BEC

* In the GPE there is a condensate density field and a confining potential

* Idea: use the Newtonian gravity to confine the BEC

2
1hoyr = —h—Vzllf + [GD + g|v|*]v,
2m
V0 = ¢ |* — (|¥]%), (1)

where m is the mass of the bosons, n = |¥|* their number
density, @ is the gravitational potential field, G = 4w Gym?
(Gy is Newton’s constant), and g = 4wah*/m, with a the



Physical motivations II

Astrophysical ‘objects’
* Boson stars

 Self-gravitating dark matter: ‘axions’ halos

* Pulsars/neutron stars : BEC of cooper pairs of neutron and proton
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Self-gravitating bosonic system

Boson star, no rotation

function}, the Fourier-truncated GPPE becomes

L 0y h’ 2 —2 2
ih > —PG{ VY + Pgl(GV™ + 9)|¥] W}- (2)
t 2m

A

directly by using the SGLPE,

AV n_, _2 )
h = PG{—V v+ uy — Psl(GV™ + 9)|¢] ]w}
t 2m

2h ,
+\/;PG[§ (X, )], (3)

where the zero-mean, Gaussian white noise ¢(X,7) has
the variance (¢ (x,1)¢*(X', ")) = 6(t —t')6(x — x'), with 8 =




FORMATION OF COMPACT OBJECTS AT FINITE ... PHYSICAL REVIEW RESEARCH 3, L022016 (2021)
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FIG. 1. Columns 1-3 show 10-level contour plots of | (X, t)|* at representative times: SGLPE (7' = 0) (top row, run R1), SGLPE (second
row, run R2), GPPE (third row, run R3), GPPE (fourth row, run R4), and 256> GPPE (fifth row, run RS; Supplemental Videos S1-S5 in the
Supplemental Material [22] show, respectively, the complete spatiotemporal evolution for these cases). Column 4: Plots of the scaled radius

1 ’l’ p(r)ridr
L Jy p(r)dr

where E, = 2°74(G/g*)'/>.

of gyration i—e = (blue) and the scaled gravitational energy Eg,,/E, (red) versus the scaled time ¢ /(£ /v) for the different runs,
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FIG. 3. Top left panel: plots of the dimensionless radius (R/L) versus the dimensionless temperature (kg7 /E,), for heating (red) and
cooling (green) runs showing a hysteresis loop. We show 10-level contour plots of | (x)|? and the associated spectra | (k)|* to illustrate, at
representative points on heating and cooling curves in the hysteresis plot, the real-space density distribution and the k—space density spectra
[keT /E, = 2.7 x 107> and kgT /E, = 3.62 x 10~ in (a) and (b) of the top panels, respectively, and kg7 /E, = 2.3 x 10~ and ksT /E, =
3.16 x 10~ in (c) and (d) of the bottom panels, respectively]. The analogs of these plots, for the case g = 0, are shown in the panels at the
very bottom. In the bottom left panel we use |Eg| at T = 0 to make the temperature dimensionless.
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FIG. 4. Ten-level contour plots of the | (x, t)|* (a) att = 0.018, (b) att = 0.025, and (c) at t = 0.03, for the initial condition for ¥ (x, t)

given in Eq. (1) of the Supplemental Material [22], showing the rotating binary system (see Supplemental Video S6 in the Supplemental
Material).



Rotating self-gravitating Bose-Einstein condensates

a model for collapsed axionic condensates
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Rotating self-gravitating Bose-Einstein condensates with a crust: A model for
pulsar glitches
introducing the crust

scattering length [29]. We describe the dynamics of the pul-
sar’s solid crust by a single polar angle €, which evolves as

) follows:
R, , d29 5 ,  df
By =~V + Vo + GO+ gy PIy, | (1) L5 = 5 [ Eeviv? —as. G)
= [y~ (P, @ | v =voew (<) vy | @
crust

I. and V, denote the moment of 1nertia of the crust
and the crust potential, respectively; o controls the fric-
tional slowing down of the rotation of the crust, with
J1I./a being the crust-friction decay time; for specificity,
we choose V (xg, yg) = 3 4 cos(BerystXg ) + COS(Peryst Vo ), With
xp = cos(0)x, + sin(f)y, and ys = — sin(0)x, + cos(0)yp;



We first obtain uniformly rotating states for the GPPE with
rotational speed €2 by solving the imaginary-time equation
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FIG. 2. Isosurface plots illustrating a rotating, compact object
with vortices obtained via the ARGLPE (see text): (a) Isosurfaces
of the boson density (top view) (for the spatiotemporal evolution
of these i1sosurfaces, see Video S1 in the Supplemental Material
[34]) and (b) isosurfaces of (V x (pv))* (side view); here, N' = 256,
G = 800, g = 80, and €2 = 60.




Then we use the preparation

a‘lﬁ hz 2 —2 2
o = 2—V v +uy —[Vo+(GV+ Y| 1Y
m
o~ P
_ zh(SZeZ X T, — ANom) .V, (7)

which we solve to obtain the rotational ground states (minima)
mentioned above; to stabilize this minimization procedure, we
reset the center of mass r., = [ d°xr,|¥|*/N to (w,w,0),
after each time step.



then we solve the BEC/crust GPPE coupled equations
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FIG. 3. Plots of crust-potential isosurfaces in blue, with V, = 450, and of ten-level isosurfaces of (V Xx (pv))?, from our DNS of the
GPPE, for the representative parameter values V), = 180, n g = 12, I. = 0.01, repe = 1.0, Argge = 0.15, ¢ = 14, and a = 0.007 (as in
Fig. 4 below) at times (a) ¢t = 0.06, (b) t = 6.48, (¢c) t = 7.38, and (d) t = 9.72. For the spatiotemporal evolution of these i1sosurfaces, see
Video S2 in the Supplemental Material [34].
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This procedure generates vortex slips and glitches

VERMA, PANDIT, AND BRACHET PHYSICAL REVIEW RESEARCH 4, 013026 (2022)
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FIG. 4. (a) Plots, vs the scaled time #€2, of (J./J., + 14) (blue curve), J;/J., (red curve), and (J. + J;)/J., (green curve), where J.,

is the initial angular momentum of the crust, for the representative parameter values given in Fig. 3 above. Expanded plots of J./J., for
(b) 0 <12y < 170 and (¢) 80 < 12y < 100.



SOC Glitch data analysis

Power laws in CDF of gain of crust angular momentum

we calculate the gain AJ. in the crust angular momentum,
between successive minima and maxima of J.(¢); we call AJ.
the event size; we scale it by J.,. In Fig. 5(a) we present a
log-log (base 10) plot of the cumulative probability distribu-
tion function (CPDF) Q(AJ./J.,); this yields the power-law
behavior Q(AJ./J.,) ~ (AJ./J,,)P for the part of the CPDF
that lies 1in the region shaded gray. Thus the probability distri-
bution function (PDF) P(AJ./J.,) ~ (AJ./J.,)P~1; by fitting
the CPDF 1n the gray region, we find g >~ 0.7 = 0.1.
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FIG. 5. Log-log (base 10) plots of (a) the CPDF Q(AJ./J., ) of the event size and (b) the CPDF Q(t.q4£20) of the event duration. (c) Semilog
(base 10) plot of the CPDF Q(#:£2). J., and €2, are the initial angular momentum and angular velocity of the crust, respectively. Our DNS
data are shown 1n blue; the black lines show fits (power law or exponential) to these data in the shaded gray regions in the plots.
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Previous papers show that the power-law exponent of
the glitch size has the followmg values: 0.02 with moat
and |0.81 without moat in Ref. [38], between 1 and 2 |in
Ref. [39], and 1.31 1n Reti. [40]. Previous papers such as
Refs. [38—40] focus on the sizes and waiting times of the
events, but not their durations, which are an element 1n this
paper. Indeed, our work should be relevant to new 1nves-
tigations 1n which glitch durations are being resolved well

[41-43].




Neutron-superfluid vortices and proton-superconductor flux tubes

Development of a minimal model for pulsar glitches
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X-AXiS (a)

FIG. 11. Real-time evolution: (a) One-level contour plot of (V x (pv))? for neutron vortices (in red) and proton flux tubes
(in cyan) at the initial time. (b) Schematic diagram showing the angle x between the rotation axis and the magnetic moment
[Eq. (40)]. (c) The evolution of the angle x with time. Both neutron and proton subsystems rotate with angular velocity

Q = Q2Z, where 2 = 4.0; and Bext = 0.8, which makes an angle © = 30° with the z-axis. Insets (d) and (e) show illustrative
proton flux-tube configurations before and after the reversal.
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FIG. 13. (a) Time series of the crust angular momentum (J. — Jc,)/Jc,- (b), (c), and (d) are the zoomed versions of the
rectangular regions shown in the preceding plots. Log-Log plots of (e) the CPDF Q(AJ./J.,) of the event size and (f) the

CPDF Q(teaf2) of the event duration. (g) semilog plot of the CPDF Q(t«€2) of the waiting time. J., and 2 are the initial
angular momentum and initial angular velocity of the crust, respectively.



Conclusion

what was done

all codes were made in Bangalore
pseudospectral spectrally truncated GPPE and SGLPE

this work is part of the thesis of 2 of R. Pandit’s students: Sanjay Shukla and
Akhilesh Kumar Verma

the classical field description of finite-T effects works well for those self-gravitating
rotating BEC

those minimal models reproduce surprisingly well some statistical large-scale effects



Thank You!



