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Geophysical flows

(Credit: NASA Apollo 17 mission)

Atmosphere and ocean dynamics
Long distance wave propagation
(tsunamis)
Numerical weather prediction
Climate modelling
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Geophysical flows: need for new numerical methods

Climate and weather models under-resolved
Need discrete conservation of mass and potential vorticity and other
mimetic properties
Computational grid should adapt to achieve specified error tolerance,
or resolve features of interest
Spherical grid should avoid singularities (near poles)
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Adaptivity in numerical models

Adaptivity changes resolution to guarantee uniform error, or focus on
regions of interest
Optimal use of computational resources

fixed uniform nested grids. . . unstructured grids. . . structured grids. . .

. . . or Wavelets!
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Development of adaptive 3D-hydrostatic dynamical core

(Credit: NASA Apollo 17 mission)

1 Shallow water equations on the plane using
TRiSK discretization

2 Shallow water equations on the sphere using
TRiSK discretization (Icosahedral C-grid)

3 Volume penalization for coastline boundary
conditions in ocean models

4 3D hydrostatic extension using DYNAMICO
approach, horizontal adaptivity
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Wavelet adaptivity
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Wavelet adaptivity
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Wavelet adaptivity

||u(x)− u≥(x)||∞ = O(ε)
N = O(ε−1/2N )

||u(x)− u≥(x)||∞ = O(N−2N )
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Dynamically adaptive wavelet method for PDEs

F

(
∂u

∂t
,
∂nu

∂xn
, x, t

)
= 0

ũjk =⇒ ujk =⇒ ∂nu

∂xn
(xjk), O(N ) complexity
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Dynamically adaptive wavelet method for PDEs
(Burgers equation)
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Dynamically adaptive wavelet method for PDEs
(Propagating front)
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Discrete wavelet transform on the sphere

vertex values ⇒ vertex values ⇒ vertex values restriction
⇓ ⇓ high-pass filter

interpolation errors interpolation errors wavelets

interpolation errors interpolation errors wavelets
⇓ ⇓ reconstruction

vertex values ⇐ vertex values ⇐ vertex values prolongation
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Wavelet transform on sphere (Schröder & Sweldens 1995)

Predict values at fine vertices m
by interpolation using stencil of
coarse vertices k

Lift values at vertices k to
conserve properties (mean) in
smooth approximation

Analysis: j + 1→ j
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2D: TRiSK scheme (Thuburn et al. 2010)

i
x

ex
xv

Staggered dual grids for mass
and vorticity
(Velocity at cell edges)

Discrete shallow water equations

∂hi
∂t

= −[div(Fe)]i
∂ue
∂t

= F⊥e qe − [grad(Bi)]e

Fe = heue is thickness flux
F⊥e is perpendicular to Fe
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Scale commutation properties of differential operators
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Commutation diagram

Nicholas Kevlahan (McMaster University) Wavelet-based climate model Rouen – juin 2019 14 / 36



Scale commutation properties of differential operators

Commutation relations

Rjh ◦ div
j+1 = divj ◦RjF conserve mass

curlj ◦Rju = Rjζ ◦ curl
j+1 conserve circulation

gradj ◦RjB = Rju ◦ gradj+1 no spurious vorticity
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Scale commutation properties of differential operators

Commutation relations

Rjh ◦ div
j+1 = divj ◦RjF conserve mass

curlj ◦Rju = Rjζ ◦ curl
j+1 conserve circulation

gradj ◦RjB = Rju ◦ gradj+1 no spurious vorticity

Adaptive overlay on any flux-based method
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Extension to icosahedral C-grid on sphere: flux restriction

Aj+1
km

l2j+4

l2j−4

l2j+1

l2j−1

k

l2jm2j

m2j+2 m2j+1

m2j−2

m2j−1

Aj+1
lm

Fine and coarse scale cells to calculate flux restriction through coarse edge indicated by
arrow. Aj+1

km and Aj+1
lm are partial areas.
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3D: DYNAMICO equations (Dubos et al 2015)

Multilayer hydrostatic shallow water equations
(compressible/incompressible)

Derive equations of motion from discrete Hamiltonians
TRiSK for horizontal discretization
Conserves energy (or enstrophy) and mass

∂mik

∂t
+ δiUk = 0, ∂Θik

∂t
+ δi (θ∗ekUk) = 0

∂vek
∂t

+ δeBk + θ∗ekδeπk + (qkUk)⊥e = 0
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Multiscale icosahedral grid resolution

J N ∆x [deg] ∆x [km]
4 2 562 4 480
5 10 242 2 240
6 40 962 1 120
7 163 842 1/2 56
8 655 362 1/4 28
9 2 621 442 1/8 14
10 10 485 762 1/16 7

Optimize coarsest grid, e.g. J = 5 (Xu 2006; Heikes & Randall 1995)
Finer grids by recursive edge-bisection, e.g. j = 6, 7, 8, . . .
Local adaptive grid scale j controlled by error tolerance ε
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Arbitrary Lagrangian Eulerian vertical coordinates (ALE)

Initialize hybrid σ − P pressure-based grid

Remap mik, θik, vek conservatively (either every ∆t or every 10∆t)
Target grid is initial grid
(could be optimized at each remapping for r−adaptivity)
Tried various piecewise remapping schemes: continuous, linear,
parabolic, quartic (Shchepetkin 2001; Engwirda & Kelly 2016)
Limiter: none, monotone, WENO

At least piecewise linear required for Held–Suarez test case
Piecewise constant sufficient for mountain induced Rossby wave and
baroclinic instability
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Grid adaptation strategy at each time step

In each vertical layer remove nodes/edges with normalized
wavelet coefficients < ε (estimate norms or calculate dynamically)

Add nearest neighbours in space and scale to allow grid refinement
Add additional nodes/edges required to construct wavelets and
TRiSK operators
Adapted horizontal grid is union of adapted grids in all vertical layers
Equivalent to propagating tendency error for constant coefficient
linear equations
Simple, good results in practice

Generates horizontally adapted grid
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Hybrid data structure: irregular tree data structure with
regular patches

Icosahedron divided into 10 regular lozenge domains.
Domains refined adaptively into sub-domains.
Lowest level locally is regular 4× 4 patch.
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Parallelization

Parallelization using mpi

Sub-domains distributed to different cores
Ghost points added, values communicated as necessary for operators
Hybrid tree–patch data structure
Communications at each trend computation and at each grid
adaptation step
Where possible communication is non-blocking
Simple load balancing at each a check point save
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Computational grid with ghost cells
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4 × 4 patch is regular grid of elements. Element is one node, two triangles and three
edges. Ghost points added at edges of sub-domain.
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Strong parallel scaling
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2D shallow water turbulence (1/16◦ max resolution)

Relative vorticity Level
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Mountain-induced Rossby wave (DCMIP 2008 case 5)

26 vertical levels, results at 700 hPa, no diffusion
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Mountain-induced Rossby wave at 25 days (DCMIP 2008 case 5)

26 vertical levels, results at 700 hPa, no diffusion
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Baroclinic instability of jet stream (DCMIP 2012 case 4)

26 vertical levels, results at 867 hPa, hyperdiffusion

νscalar = 5.3× 1012, νdiv = 1.0× 1014, νcurl = 1.1× 1013
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Baroclinic instability of jet stream (DCMIP 2012 case 4)

Grid compression as J increases (Jmin = 5, no diffusion, adapt on trend)
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Baroclinic instability of jet stream (DCMIP 2012 case 4)

Compare adaptivity (No diffusion, equal number of active grid points)
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Baroclinic instability of jet stream (DCMIP 2012 case 4)

Compare adaptivity (No diffusion, equal number of active grid points at day 9)
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Baroclinic instability of jet stream (DCMIP 2012 case 4)

Compare adaptivity (No diffusion, equal number of active grid points at day 9)
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Held & Suarez (1994) 1/4◦ maximum resolution
ε = 0.02, 18 vertical levels, results at 250 hPa, piecewise parabolic remapping
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Held & Suarez (1994) low resolution 1◦ run
ε = 0.04 (18 vertical levels, results at 250 hPa, piecewise parabolic remapping)
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Held & Suarez (1994) high resolution 1/4◦ run
ε = 0.02 (18 vertical levels, results at 250 hPa, piecewise parabolic remapping)
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Held & Suarez (1994) zonal statistics
High resolution: J = 6, 7, 8, ε = 0.02, piecewise parabolic remapping
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Conclusions

DYNAMICO-based 3D hydrostatic model

Lagrangian vertical coordinate (ALE) with conservative remapping
Multiscale representation
Dynamic adaptivity controlled by local estimate of interpolation error
Vertically uniform, horizontally adapted grid
Adaptivity overlay on TRiSK discretization or other flux-based schemes
Efficient parallelization using mpi, dynamic load balancing, hybrid data structure
Large grid compression achieved at high resolutions

Ongoing work

Adapt vertical grid by optimizing target grid (r−adaptivity) and possibly
de-activating some vertical layers (dormant layers)
Simple physics applied to planets (Saturn, exoplanets)
Ocean model (ocean circulation, turbulence generation, tsunamis)
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