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Simulations of reactive flows at pore scale

Motivations
I Flows through porous media (geological structures or artificial

material)
I Studies at large dimensions (reservoir) with macroscopic models w.r.t

physic phenomenons
I Need of microscopic simulations in order to further calibrate

macroscopic models.
I Intrusive physical measurements of rocks samples replaced by

simulation from X-ray imagery
I Applications to reservoirs safety and long term CO2 mineral storage
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Challenges of simulations of reactive flows at pore scale

Application
I 3 time scales

I hydrodynamic scale : ∼ 100ms
I chemical equilibrium : ∼ 10 s
I dissolution : ∼ 1 h

I Complex chemical phenomenons: dissolution, precipitation,
crystallization

I In a geological context : need years of simulation

Computing
I Long term simulations w.r.t time-steps
I Large data from X-ray high resolution sample scans
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High order remeshed particle method on GPU
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Vortex method
Solving conservation equations:

∂u
∂t + div(a : u) + Au = F

where u(x , t) is a conservated quantity (unknown) and a(x , t) is the velocity

Operator splitting
I Solve ∂u

∂t + div(a : u) = 0 with remeshed particle method
I Solve ∂u

∂t + Au = F with best suited method

Discretisation using particles (xp, vp, up)
I Approximation: uh(x , t) =

∑
p up(t)δ(x − xp(t))

I Particles trajectories: dxp
dt = a(xp, t)

I Transported quantities: up(t) = u(xp, t)vp
I Particles volume: dvp

dt = div(a(xp, t))vp
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Remeshed particle methods
Remeshing step
I Velocity distortions may lead to unoverlapping particle distribution
I Redistributing particles (particle-grid interpolation) every few

timesteps enforce a sufficient regularity of the particle distribution
I remeshing at every timestep1: remeshed particle methods = forward

and conservative semi-Lagrangian method

Particle-grid interpolation

un+1
i =

∑
p

un
pΓ
(

xn+1
p − xi

∆x

)

with xi a point of a regular grid of size ∆x and (·)n the quantity at time
tn. Γ is a remeshing formula.

1Koumoutsakos and Leonard, JFM, 1995
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Numerical analysis of remeshed particle method
- Multidimensional cases reduces to 1D analysis with dimensional splitting

Consistency with transport equation2: ∂u
∂t + (a · ∇)u = 0

Under the Lagrangian CFL condition ∆t < ||a′||−1∞ , the remeshed particle
method is consistent with a transport equation and the consistency error is
bounded by O(∆tα + ∆xmin(p,r)) provided that :
I α-order in time for advection
I Remeshing formula Γ satisfies the conditions:

I
∑

k Γ(x − k) = 1 and
∑

k(x − k)jΓ(x − k) = 1 , 1 6 j 6 p
I Γ ∈ C r (R), r > 1
I Γ(i − j) = δij , i , j ∈ Z
I Γ support is [−p/2− 1; p/2 + 1]
I Γ is even, piecewise polynomial of degree 2r + 1 over integer intervals

Stability of the scheme2
Same hypothesis as above

2GH Cottet, JME, F Perignon and C Picard, ESAIM: M2AN, 2014
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Remarks towards implementation

I High order remeshing ⇒ large support and high polynomial degree ⇒
large number of computations per particle

I Dimensional splitting ⇒ O(d(p + 2)) complexity (instead of
O((p + 2)d ) with tensorial formulas)

I Usage of regular cartesian grid ⇒ regular data structure and stencils
scheme for homogeneous transport equation

I Usage of regular cartesian grid ⇒ use grid-based method for other
terms of the conservation equation.

I Method well suited to GPU architecture (regular data structure, high
arithmetic intensity) and parallel implementation
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Hybrid high performance computing – GPU
CPU-GPU comparison

CPU:
I Large memory
I Small core nb. at high freq.
I Several cache levels
I Important instruction controller
I Multitask (OS, devices, . . . )

GPU:
I Small dedicated memory
I Very large cores nb. at low freq.
I Programmable cache
I Massively parallel (SIMD)
I ∼ 6TFLOPS (DP)

Major difficulties of hybrid programming
I Important vectorization needed
I Data transfers

I Regular patterns for data access
Need to think about this architecture when designing the methods
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High performance computing

HySoP (Hybid Simulation with Particles)
I Open Source python package (not released yet)
I Low level computations in compiled languages (Fortran, C, OpenCL)
I Generated and autotuned low level (OpenCL) code
I Distributed and parallel computations (MPI + GPU)
I High level of abstraction (user interface ∼ eDSL)
I Coarse grained task parallelism
I Dimensional splitted operators implemented in best transposition

state for data (similar to fftw)
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Reactive flows
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Remeshed particle method with penalization

Handle obstacles in fluid : Brinkman penalization method
I extend flow velocity inside solid bodies
I add an external force on the flow following a Darcy law3

I penalization term depending on a specific permeability parameter
I handle rigid body motion
I no need to specify a boundary condition at fluid-solid interface

Penalization term for vorticity equation
∇× (λχ(ub − u))

I λ : permeability parameter (0: fluid, ∞ : solid)
I χ : solid body indicator function
I ub : solid body velocity

One more step in operator splitting, solved implicitly

3Kevlahan and Ghidaglia, Eur. J. Mech. B - Fluids, 2001
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Validation benchmark
Calcite crystal dissolution in a micro-channel
I high resolution dataset from experiment (S. Roman, Stanford

University)
I Validation against experiment in 2D4

4P Poncet, JME and L Hume, InterPore conference 2018
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3D calcite dissolution with remeshed particle method

Full model

CaCO3 + 2H+ −−⇀↽−− Ca +
2 + HCO –

3 + H+ −−⇀↽−− Ca +
2 + H2O + CO2

I dissolution and precipitation
I solid in suspension
I gas emissions
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3D calcite dissolution with remeshed particle method
Simplified model (solid-fluid)

CaCO3 + 2H+ −−⇀↽−− Ca +
2 + HCO –

3 + H+

ε−1
∂ρu
∂t − div(ε−1µ(ε)∇u+ε−2ρu : u) + µ(ε) K−10

(1− ε)2
ε3

u︸ ︷︷ ︸
Kozeny-Carman law

= −∇p
div u = 0
ε̇ = Kd (1− ε)CH−KpCCaCHCO3υ

∂CH,Ca
∂t + (u · ∇)CH,Ca − div(σ(ε)︸︷︷︸

Archie law

∇CH,Ca) = ±ε̇/υ

+ adequate initial and boundary conditions

I ε : porosity ([CaCO3] = (1− ε)/υ)
I CH,Ca : concentration in either H+ or Ca2+ and HCO –

3
I Kd : dissolution reaction constant
I Kozeny-Carman law : Poiseuille law in porous media, K0 : permeability
I Archie law : molecular diffusion in porous media (σ(ε) = εDM)

I u(x , t) = lims→∞ ue(x , t, s) et ue(x , t, 0) = u(x , t −∆t)
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3D calcite dissolution with remeshed particle method
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3D calcite dissolution with remeshed particle method
Simplified model (solid-fluid, dissolution only and constant viscosity)

Stokes flow, as a fixed point, in u-ω formulation
CaCO3 + 2H+ −−→ Ca +

2 + HCO –
3 + H+

∂ω

∂s − ν∆ω + νK−10 ∇×
(

(1− ε)2
ε2

ue

)
= 0 (u-ω formulation)

∆ue = −∇× ω (ω = ∇× ue)
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3D calcite dissolution with remeshed particle method
Spatial and temporal multi-scale problem

3 time scales:
I hydrodynamic: time of domain traversal (<1s)
I Chemical reaction characteristic time: quasi-stationary state for rate of

reaction (' 10s)
I dissolution time: solid evolution (' 10 min at pH = 1)

2 space scales, high Schmidt number (Sc = ν
σ(ε) =

√
ην

ησ
>> 1):

I Flow scale (coarse)
I Chemical species concentration (fine)

Simulation features
I One spatial grid size for each scale
I Transport-diffusion-reaction solved on the fine grid on GPU
I Implicit penalization (solid influence on flow)
I Time scale separation (using a fixed point to reach flow stationary state)
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3D calcite dissolution with remeshed particle method

Sketch of the algorithm for Stokes reactive flow

Stokes, fixed-point iterations, coarse grid, multi-CPU

Chemicals transport and react, fine grid, multi-GPU

t = tn

un,ωn, εn,Cn
H ,Cn

Ca

t = tn+1

un+1,ωn+1, εn+1,Cn+1
H ,Cn+1

Ca

Advec. & Rmsh.
RK2, Λp,r

Diffusion (σ(ε))
FDInterpol.

Chemicals

Interpolation

Penalization Diffusion (ν)
FFT

Absorption Poisson
FFT Flowrate

CH ,CCa

ε
u

CH ,CCa CH ,CCa

ε

ε

ε,CH ,CCa

u,ω,ε ω ω ω u
uω
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 0.12, t = 0
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 0.12, t = 0.30176
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 0.12, t = 1.01725
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 0.12, t = 40.69
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 0.12, t = 61.0352
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3D calcite dissolution with remeshed particle method

Reduced model (solid-fluid, dissolution only and constant viscosity)
Turbulent flow

CaCO3 + 2H+ −−→ Ca2+ + HCO –
3 + H+

∂ω

∂t + (u · ∇)ω + (ω · ∇)u − ν∆ω + νK−10 ∇×
(

(1− ε)2
ε2

ue

)
= ∇× f

∆ue = −∇× ω (ω = ∇× u)
div u = 0
ε̇ = Kd (1− ε)CH
∂CH,Ca
∂t + (u · ∇)CH,Ca − div(σ(ε)∇CH,Ca) = ±ε̇/υ

+ adequate initial and boundary conditions
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 960, t = 4.026
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3D calcite dissolution with remeshed particle method
Numerical illustration : Re = 960, t = 29.234
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Conclusions and future works
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Conclusions and future works

Conclusions
I Exploiting several levels of parallelism
I Multi-scale resolution (spatial and temporal)
I Multi-physics simulation (flow + chemical)
I Robust method and implementation : from microfluid (Re = 0.12) to

turbulent reactive flows (Re = 960)
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Conclusions and future works
Future works
I Overall optimization of the code (MPI-GPU interactions on modern

architectures)
I Handle precipitation, solid in suspension in flow
I Use of real complex geometries from X-ray tomography (flow is ok,

need chemistry)
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