Reactive flows at pore scale with hybrid computing

Jean-Matthieu Etancelin Laboratoire de Mathématiques et leurs Applications de Pau UMR CNRS 5142, IPRA Université de Pau et des Pays de l'Adour

Rencontres Mathématiques de Rouen 2019

Simulations of reactive flows at pore scale

Motivations

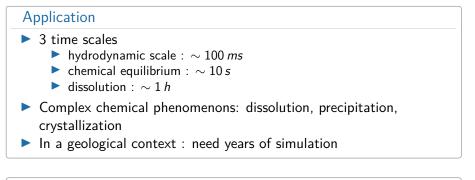
- Flows through porous media (geological structures or artificial material)
- Studies at large dimensions (reservoir) with macroscopic models w.r.t physic phenomenons
- Need of microscopic simulations in order to further calibrate macroscopic models.
- Intrusive physical measurements of rocks samples replaced by simulation from X-ray imagery
- \blacktriangleright Applications to reservoirs safety and long term CO $_2$ mineral storage

Challenges of simulations of reactive flows at pore scale

- 3 time scales
 - hydrodynamic scale : $\sim 100 \ ms$
 - chemical equilibrium : $\sim 10 \, s$
 - dissolution : $\sim 1 h$
- Complex chemical phenomenons: dissolution, precipitation, crystallization
- In a geological context : need years of simulation

Context	

Challenges of simulations of reactive flows at pore scale



Computing

- Long term simulations w.r.t time-steps
 - Large data from X-ray high resolution sample scans

High order remeshed particle method on GPU

Vortex method

Solving conservation equations:

$$\frac{\partial u}{\partial t} + \operatorname{div}(a:u) + Au = F$$

where u(x, t) is a conservated quantity (unknown) and a(x, t) is the velocity

Vortex method

Solving conservation equations:

$$\frac{\partial u}{\partial t} + \operatorname{div}(a:u) + Au = F$$

where u(x, t) is a conservated quantity (unknown) and a(x, t) is the velocity

Operator splitting Solve ∂u/∂t + div(a : u) = 0 with remeshed particle method Solve ∂u/∂t + Au = F with best suited method

Vortex method

Solving conservation equations:

$$\frac{\partial u}{\partial t} + \operatorname{div}(a:u) + Au = F$$

where u(x, t) is a conservated quantity (unknown) and a(x, t) is the velocity

Operator splitting Solve ∂u/∂t + div(a : u) = 0 with remeshed particle method Solve ∂u/∂t + Au = F with best suited method

Discretisation using particles (x_p, v_p, u_p) Approximation: $u_h(x, t) = \sum_p u_p(t)\delta(x - x_p(t))$ Particles trajectories: $\frac{dx_p}{dt} = a(x_p, t)$ Transported quantities: $u_p(t) = u(x_p, t)v_p$ Particles volume: $\frac{dv_p}{dt} = div(a(x_p, t))v_p$

Remeshed particle methods

Remeshing step

Velocity distortions may lead to unoverlapping particle distribution

- Redistributing particles (particle-grid interpolation) every few timesteps enforce a sufficient regularity of the particle distribution
- remeshing at every timestep¹: remeshed particle methods = forward and conservative semi-Lagrangian method

¹Koumoutsakos and Leonard, JFM, 1995

Remeshed particle methods

Remeshing step

Velocity distortions may lead to unoverlapping particle distribution

- Redistributing particles (particle-grid interpolation) every few timesteps enforce a sufficient regularity of the particle distribution
- remeshing at every timestep¹: remeshed particle methods = forward and conservative semi-Lagrangian method

Particle-grid interpolation

$$u_i^{n+1} = \sum_p u_p^n \Gamma\left(\frac{x_p^{n+1} - x_i}{\Delta x}\right)$$

with x_i a point of a regular grid of size Δx and $(\cdot)^n$ the quantity at time t^n . Γ is a remeshing formula.

¹Koumoutsakos and Leonard, JFM, 1995

Numerical analysis of remeshed particle method

- Multidimensional cases reduces to 1D analysis with dimensional splitting

²GH Cottet, **JME**, F Perignon and C Picard, ESAIM: M2AN, 2014

Numerical analysis of remeshed particle method

- Multidimensional cases reduces to 1D analysis with dimensional splitting

Consistency with transport equation²: $\frac{\partial u}{\partial t} + (a \cdot \nabla)u = 0$

Under the Lagrangian CFL condition $\Delta t < ||a'||_{\infty}^{-1}$, the remeshed particle method is consistent with a transport equation and the consistency error is bounded by $\mathcal{O}(\Delta t^{\alpha} + \Delta x^{\min(p,r)})$ provided that :

- α -order in time for advection
- Remeshing formula Γ satisfies the conditions:
 - $\sum_{k} \Gamma(x-k) = 1$ and $\sum_{k} (x-k)^{j} \Gamma(x-k) = 1$, $1 \leq j \leq p$

$$\ \ \, \mathsf{\Gamma}\in C^r(\mathbb{R}),\ r\geqslant 1$$

$$\blacktriangleright \ \Gamma(i-j) = \delta_{ij}, \ i,j \in \mathbb{Z}$$

•
$$\Gamma$$
 support is $[-p/2 - 1; p/2 + 1]$

Γ is even, piecewise polynomial of degree 2r + 1 over integer intervals

²GH Cottet, **JME**, F Perignon and C Picard, ESAIM: M2AN, 2014

Numerical analysis of remeshed particle method

- Multidimensional cases reduces to 1D analysis with dimensional splitting

Consistency with transport equation²: $\frac{\partial u}{\partial t} + (a \cdot \nabla)u = 0$

Under the Lagrangian CFL condition $\Delta t < ||a'||_{\infty}^{-1}$, the remeshed particle method is consistent with a transport equation and the consistency error is bounded by $\mathcal{O}(\Delta t^{\alpha} + \Delta x^{\min(p,r)})$ provided that :

- α -order in time for advection
- Remeshing formula Γ satisfies the conditions:
 - $\sum_{k} \Gamma(x-k) = 1$ and $\sum_{k} (x-k)^{j} \Gamma(x-k) = 1$, $1 \leq j \leq p$

$$\ \ \, \mathsf{\Gamma}\in C^r(\mathbb{R}),\ r\geqslant 1$$

$$\blacktriangleright \ \Gamma(i-j) = \delta_{ij}, \ i,j \in \mathbb{Z}$$

•
$$\Gamma$$
 support is $[-p/2 - 1; p/2 + 1]$

 Γ is even, piecewise polynomial of degree 2r + 1 over integer intervals

Stability of the scheme²

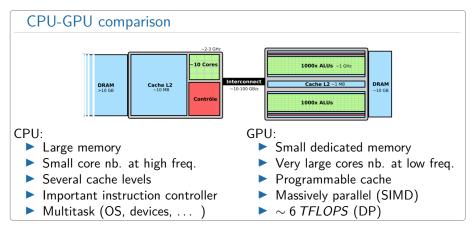
Same hypothesis as above

²GH Cottet, **JME**, F Perignon and C Picard, ESAIM: M2AN, 2014

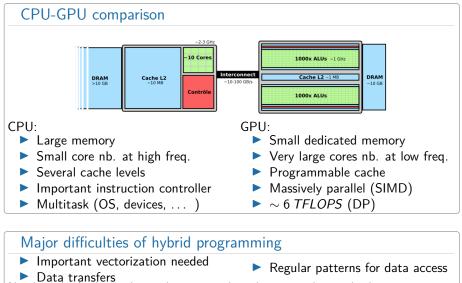
Remarks towards implementation

- ► High order remeshing ⇒ large support and high polynomial degree ⇒ large number of computations per particle
- ▶ Dimensional splitting $\Rightarrow O(d(p+2))$ complexity (instead of $O((p+2)^d)$ with tensorial formulas)
- ► Usage of regular cartesian grid ⇒ regular data structure and stencils scheme for homogeneous transport equation
- ► Usage of regular cartesian grid ⇒ use grid-based method for other terms of the conservation equation.
- Method well suited to GPU architecture (regular data structure, high arithmetic intensity) and parallel implementation

Hybrid high performance computing - GPU



Hybrid high performance computing - GPU



Need to think about this architecture when designing the methods

High performance computing

HySoP (Hybid Simulation with Particles)

- Open Source python package (not released yet)
- Low level computations in compiled languages (Fortran, C, OpenCL)
- Generated and autotuned low level (OpenCL) code
- Distributed and parallel computations (MPI + GPU)
- High level of abstraction (user interface \sim eDSL)
- Coarse grained task parallelism
- Dimensional splitted operators implemented in best transposition state for data (similar to fftw)

Context	High order remeshed	particle method on GPU

Reactive flows

(Reactive flows)

Remeshed particle method with penalization

Handle obstacles in fluid : Brinkman penalization method

- extend flow velocity inside solid bodies
- add an external force on the flow following a Darcy law³
- penalization term depending on a specific permeability parameter
- handle rigid body motion
- no need to specify a boundary condition at fluid-solid interface

³Kevlahan and Ghidaglia, Eur. J. Mech. B - Fluids, 2001

(Reactive flows)

Remeshed particle method with penalization

Handle obstacles in fluid : Brinkman penalization method

- extend flow velocity inside solid bodies
- add an external force on the flow following a Darcy law³
- penalization term depending on a specific permeability parameter
- handle rigid body motion
- no need to specify a boundary condition at fluid-solid interface

Penalization term for vorticity equation

 $abla imes (\lambda \chi (u_b - u))$

- λ : permeability parameter (0: fluid, ∞ : solid)
- χ : solid body indicator function
- *u_b* : solid body velocity

One more step in operator splitting, solved implicitly

³Kevlahan and Ghidaglia, Eur. J. Mech. B - Fluids, 2001

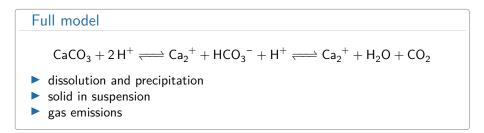
Validation benchmark

Calcite crystal dissolution in a micro-channel

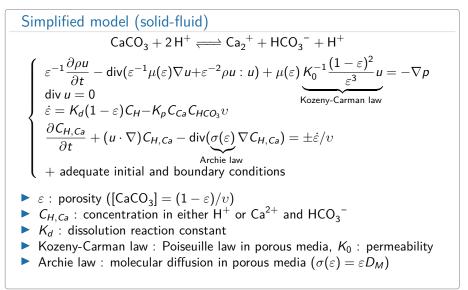
- high resolution dataset from experiment (S. Roman, Stanford University)
- Validation against experiment in 2D⁴



⁴P Poncet, **JME** and L Hume, InterPore conference 2018



Context



Context

Simplified model (solid-fluid, dissolution only and constant viscosity) Stokes flow $\begin{cases} \mathsf{CaCO}_3 + 2\mathsf{H}^+_1 \underbrace{-\upsilon}_2 \mathsf{Ca}_2^+ + \mathsf{HCO}_3^- + \mathsf{H}^+\\ -\upsilon \Delta u + \upsilon \mathsf{K}_0^{-1} \underbrace{(1-\varepsilon)^2}_{\varepsilon^2} u = -\nabla p\\ \mathsf{div} \ u = 0\\ \dot{\varepsilon} = \mathsf{K}_d (1-\varepsilon) \mathsf{C}_H - \mathsf{K}_p \mathsf{C}_{\mathsf{Ca}} \mathsf{C}_{\mathsf{HCO}_3} \upsilon\\ \frac{\partial \mathsf{C}_{\mathsf{H},\mathsf{Ca}}}{\partial t} + (u \cdot \nabla) \mathsf{C}_{\mathsf{H},\mathsf{Ca}} - \mathsf{div}(\sigma(\varepsilon) \nabla \mathsf{C}_{\mathsf{H},\mathsf{Ca}}) = \pm \dot{\varepsilon}/\upsilon\\ + \text{ adequate initial and boundary conditions} \end{cases}$ • ε : porosity ([CaCO₃] = $(1 - \varepsilon)/\upsilon$) • $C_{H,Ca}$: concentration in either H⁺ or Ca²⁺ and HCO₃⁻ K_d : dissolution reaction constant \triangleright Kozeny-Carman law : Poiseuille law in porous media, K_0 : permeability Archie law : molecular diffusion in porous media ($\sigma(\varepsilon) = \varepsilon D_M$)

Simplified model (solid-fluid, dissolution only and constant viscosity) Stokes flow, as a fixed point $Ca\dot{CO}_3 + 2H^+ \longrightarrow Ca_2^+ + HCO_2^- + H^+$ $\begin{cases} \frac{\partial u_e}{\partial s} - \nu \Delta u_e + \nu K_0^{-1} \frac{(1-\varepsilon)^2}{\varepsilon^2} u_e = -\nabla p & \text{(fixed point iterations)} \\ \operatorname{div} u = 0 \\ \dot{\varepsilon} = K_d (1-\varepsilon) C_H - K_p C_{Ca} C_{HCO_3} \upsilon \\ \frac{\partial C_{H,Ca}}{\partial t} + (u \cdot \nabla) C_{H,Ca} - \operatorname{div}(\sigma(\varepsilon) \nabla C_{H,Ca}) = \pm \dot{\varepsilon}/\upsilon \\ + \text{ adequate initial and boundary conditions} \end{cases}$ $\triangleright \varepsilon$: porosity ([CaCO₃] = $(1 - \varepsilon)/v$) • C_{H,C_a} : concentration in either H⁺ or Ca²⁺ and HCO₃⁻ \blacktriangleright K_d : dissolution reaction constant \triangleright Kozeny-Carman law : Poiseuille law in porous media, K_0 : permeability Archie law : molecular diffusion in porous media ($\sigma(\varepsilon) = \varepsilon D_M$) • $u(x,t) = \lim_{s\to\infty} u_e(x,t,s)$ et $u_e(x,t,0) = u(x,t-\Delta t)$

Simplified model (solid-fluid, dissolution only and constant viscosity) Stokes flow, as a fixed point, in u- ω formulation $CaCO_3 + 2H^+ \longrightarrow Ca_2^+ + HCO_3^- + H^+$ $\begin{cases} \frac{\partial \omega}{\partial s} - \nu \Delta \omega + \nu K_0^{-1} \nabla \times \left(\frac{(1-\varepsilon)^2}{\varepsilon^2} u_e \right) = 0 & (u \text{-} \omega \text{ formulation}) \\ \Delta u_e = -\nabla \times \omega & (\omega = \nabla \times u_e) \\ \text{div } u = 0 & \\ \dot{\varepsilon} = K_d (1-\varepsilon) C_H - K_p C_{Ca} C_{HCO_3} \upsilon & \\ \frac{\partial C_{H,Ca}}{\partial t} + (u \cdot \nabla) C_{H,Ca} - \text{div}(\sigma(\varepsilon) \nabla C_{H,Ca}) = \pm \dot{\varepsilon} / \upsilon \\ + \text{ adequate initial and boundary conditions} \end{cases}$ $(\omega = \nabla \times \mu_{\rm c})$ • ε : porosity ([CaCO₃] = $(1 - \varepsilon)/\upsilon$) • C_{H,C_a} : concentration in either H⁺ or Ca²⁺ and HCO₃⁻ K_d : dissolution reaction constant \blacktriangleright Kozeny-Carman law : Poiseuille law in porous media, K_0 : permeability Archie law : molecular diffusion in porous media ($\sigma(\varepsilon) = \varepsilon D_M$) ► $u(x,t) = \lim_{s\to\infty} u_e(x,t,s)$ et $u_e(x,t,0) = u(x,t-\Delta t)$

Spatial and temporal multi-scale problem

3 time scales:

- hydrodynamic: time of domain traversal (<1s)</p>
- Chemical reaction characteristic time: quasi-stationary state for rate of reaction (~ 10s)

▶ dissolution time: solid evolution ($\simeq 10$ min at pH = 1)

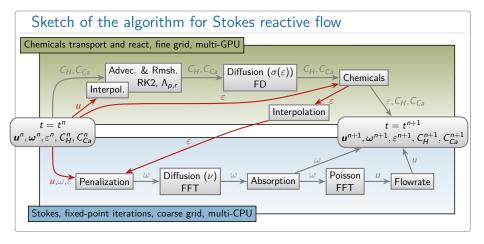
2 space scales, high Schmidt number ($Sc = rac{
u}{\sigma(\varepsilon)} = \sqrt{rac{\eta_{
u}}{\eta_{\sigma}}} >> 1$):

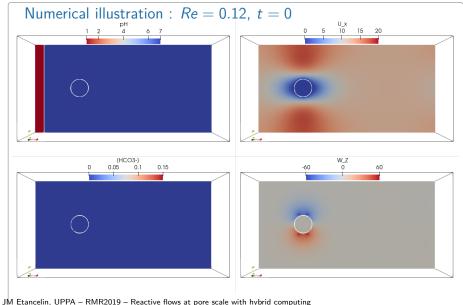
Flow scale (coarse)

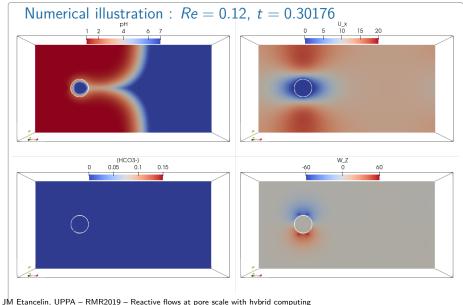
Chemical species concentration (fine)

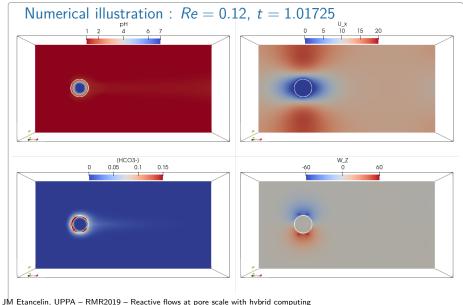
Simulation features

- One spatial grid size for each scale
- Transport-diffusion-reaction solved on the fine grid on GPU
- Implicit penalization (solid influence on flow)
- Time scale separation (using a fixed point to reach flow stationary state)



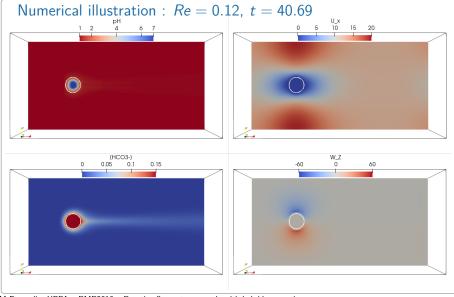




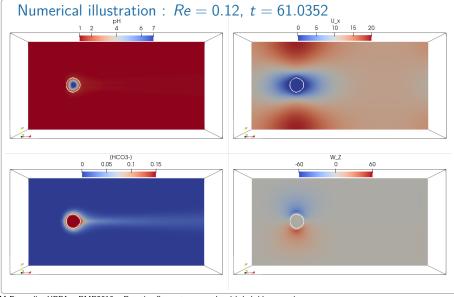


Conclusions and future works

3D calcite dissolution with remeshed particle method



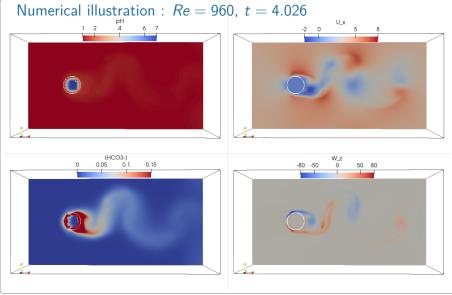
3D calcite dissolution with remeshed particle method



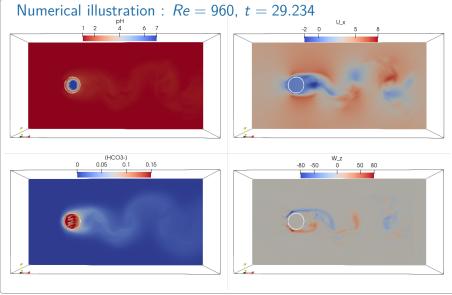
Context

$$\begin{array}{l} \hline \mbox{Reduced model (solid-fluid, dissolution only and constant viscosity)} \\ \hline \mbox{Turbulent flow} \\ \hline \mbox{CaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_3 + 2\,\mbox{H}^+ \longrightarrow \mbox{Ca}^{2+} + \mbox{HCO}_3^- + \mbox{H}^+ \\ \hline \mbox{GaCO}_4 = - \mbox{V} \times \mbox{W} \\ \mbox{GaCO}_4 = - \mbox{V} \times \mbox{W} \\ \mbox{GaCO}_4 = - \mbox{V} \times \mbox{W} \\ \hline \mbox{GaCO}_4 = - \mbox{V} \times \mbox{GaCO}_4 \\ \hline \mbox{GaCO}_4 = - \mbox{V} \times \mbox{GaCO}_4 \\ \hline \mbox{GaCO}_4 = - \mbox{V} \times \mbox{GaCO}_4 \\ \hline \mbox{H} \times \mbox{H} \\ \hline \mbox{GaCO}_4 = - \mbox{V} \times \mbox{H} \\ \hline \mbox{GaCO}_4 = - \mbox{GaCO}_4 \\ \hline \mbox{$$

3D calcite dissolution with remeshed particle method



3D calcite dissolution with remeshed particle method



Conclusions and future works

Conclusions and future works

Conclusions

- Exploiting several levels of parallelism
- Multi-scale resolution (spatial and temporal)
- Multi-physics simulation (flow + chemical)
- Robust method and implementation : from microfluid (*Re* = 0.12) to turbulent reactive flows (*Re* = 960)

Conclusions and future works

Future works

- Overall optimization of the code (MPI-GPU interactions on modern architectures)
- Handle precipitation, solid in suspension in flow
- Use of real complex geometries from X-ray tomography (flow is ok, need chemistry)

