Some theoretical studies on the stochastic Gross-Pitaevskii equation

R. Fukuizumi¹ A. de Bouard² and A. Debussche³

¹RCPAM, GSIS, Tohoku University, Japan ²CMAP, Ecole Polytechnique, France ³IRMAR, ENS Cachan Bretagne, France

Advances in mathematical modelling and numerical simulation of superfluids, July 7, 2018 @ AIMS conference, Taipei

Introduction

Motivation in Physics

- Oibbs equilibrium
 - Gibbs measure
 - Our results

• Motivation in Physics

- Gibbs equilibrium
 - Gibbs measure
 - Our results

Motivation in Physics

Dynamics of BEC at positive temperature

- At the zero temperature T = 0, all the atoms are well-presented by a single condensate function and the coherent evolution of the wave function is described by the standard Gross-Pitaevskii equation
- At higher temperature, all spontaneous and incoherent process (for ex. interaction with thermal cloud) may not be neglected
- The effect of such incoherent elements are implemented by adding a dissipation and a noise to the GP equation, called '(Simple Growth Projected) Stochastic GP equation' (P.B. Blakie et al., Advanced in Physics (2008))

$$d\psi = \mathcal{P}\left\{-\frac{i}{\hbar}L_{GP}\psi dt + \frac{\gamma}{k_BT}(\nu - L_{GP})\psi dt + dW(x,t)\right\}$$

where \mathcal{P} : projection to the lowest energy modes, u: chemical potential

$$L_{GP} = -\frac{\hbar^2}{2m} \nabla^2 + V(x) + g |\psi|^2, \langle dW(s,y), dW(t,x) \rangle = 2\gamma \delta_{t-s} \delta_{x-y}$$

This model is in very good qualitative agreement with the experiments aiming to simulate condensation process

- Spontaneous nucleation of vortices in BEC (Weiler et al. Nature (2008)).
 - Vortex formation occurrence during a phase transition predicted by Kibble-Zurek mechanism.
 - Cf. Numerical simulations by Romain Poncet (2017).
- Investigation of the thermal (Gibbs) equilibrium, which gives the classification (Universality class) of the type of phase transitions (M.Kobayashi-L.Cugliandolo Phys. Rev. E (2016))

Remark that essentially, finite dimension models are analyzed in Physics.

Our aim: Study these models from a mathematical point of view, (i.e., in infinite dimension). In particular, interested in the Gibbs equilibrium.

We consider mathematically (for the moment in 1d):

- $(\Omega, \mathcal{F}, \mathbb{P})$: propability space endowed with filtration $(\mathcal{F}_t)_{t\geq 0}$
- The equation :

$$\begin{cases} dX &= (i+\gamma)(\partial_x^2 X - V(x)X + \nu X - \lambda |X|^2 X)dt + \sqrt{2\gamma}dW, \\ X(0) &= X_0, \quad t > 0, \quad x \in \mathbb{R} \end{cases}$$

where $\gamma > 0.$ Assume $V(x) = x^2$, $u \geq 0$ and $\lambda = 1$ (defocusing).

- $(\partial_x^2 x^2)h_k = -\lambda_k^2 h_k$ with $\lambda_k = \sqrt{2k+1}$, $k \in \mathbb{N}$. The eigenfunctions $h_k(x)$ are known as the Hermite functions.
- W(t) : cylindrical Wiener pocess on $L^2(\mathbb{R},\mathbb{C})$, i.e.

$$W(t,x) = \sum_{k \in \mathbb{N}} \beta_k(t) h_k(x), \quad t > 0, \ x \in \mathbb{R}$$

where $\{\beta_k(t)\}_{k\in\mathbb{N}}$: a sequence of \mathbb{C} -valued independent Brownian motions.

Known results

- Burq, Tzvetkov and Thomann, ($\gamma = 0$, $\lambda = \pm 1$, $V(x) = x^2$, 1d) Ann. Inst. Fourier (Grenoble) (2013)
 - Construction of Gibbs measure, Global Cauchy theory in the negative Sobolev space.
- Barton-Smith, (γ ≠ 0, λ = ±1, V(x) = 0, bounded domain D, any d) Nonlinear differ. equ. appl.(2004)
 - Existence and Uniqueness of invariant measure on $L^p(D)$ $(p \in [2,\infty))$ for a not too small $\gamma \neq 0$
- E.A. Carlen, J. Fröhlich and J. Lebowitz, (regular noise, λ = -1, V(x) = 0, periodic boundary condi., 1d) Commun. Math. Phys. (2016)
 - Construction of the "grand-canonical" Gibbs measure (i.e. modified Hamiltonian by a restoring term) and exponential convergence under some assumptions on the noise

Introduction

Motivation in Physics

- Gibbs measure
- Our results

Gibbs measure

• Hamiltonian for the case of $\gamma=$ 0: ($\nu=$ 0 for simplicity)

$$H(u) = \frac{1}{2} \int_{\mathbb{R}} |(-\partial_x^2 + x^2)^{1/2} u|^2 dx + \frac{1}{4} \int_{\mathbb{R}} |u|^4 dx$$

• The Gibbs measure formally:

$$\rho(du) = \Gamma e^{-H(u)} du$$

= $\Gamma e^{-\frac{1}{4} \int_{\mathbb{R}} |u|^4 dx} e^{-\frac{1}{2} ((-\partial_x^2 + x^2)u, u)_{L^2}} du$

where Γ is the normalizing constant.

• The last part may be written using the decomposition $u = \sum_{k} (a_k + ib_k)h_k$ with $(a_k, b_k) \in \mathbb{R}^2$, $\prod_k \frac{\lambda_k^2}{2\pi} e^{-\frac{\lambda_k^2}{2}(a_k^2 + b_k^2)} da_k db_k (=: \mu(du))$

This is a Gaussian measure, and can be interpreted as the law of random variable $\sum_{k\in\mathbb{N}}rac{\sqrt{2}}{\lambda_k}g_k(\omega)h_k(x)$ with $\mathcal{L}(g_k) = \mathcal{N}_{\mathbb{C}}(0,1)$

Gibbs measure and the stationary solution

Let us denote by

$$Z_{\infty}(t) = \sqrt{2\gamma} \int_{-\infty}^{t} e^{-(t-s)(i+\gamma)(-\partial_x^2+x^2)} dW(s),$$

the solution of

$$dZ = (i + \gamma)(\partial_x^2 - x^2)Zdt + \sqrt{2\gamma}dW$$

which is stationary.

• Write $Z_{\infty}(t)$ using the basis $\{h_k\}_k$,

$$Z_{\infty}(t) = \sqrt{2\gamma} \sum_{k \in \mathbb{N}} \left(\int_{-\infty}^{t} e^{-(t-s)(i+\gamma)\lambda_{k}^{2}} d\beta_{k}(s) \right) h_{k}$$

ullet The law of $Z_\infty(t)$ equals to the Gaussian measure μ , since

$$\mathcal{L}\left(\sqrt{2\gamma}\int_{-\infty}^{0}e^{s(i+\gamma)\lambda_{k}^{2}}d\beta_{k}(s)\right)=\mathcal{N}_{\mathbb{C}}\left(0,\frac{2}{\lambda_{k}^{2}}\right)$$

Support of the measure

• For $m \in \mathbb{N}$, $2m \ge p$, we have, by Minkowski's inequality,

$$|Z_{\infty}(t)|_{L^{2m}_{\omega}(L^{p}_{x})} \leq C_{m} \Big| \sum_{k \in \mathbb{N}} \frac{|h_{k}(x)|^{2}}{\lambda_{k}^{2}} \Big|_{L^{p/2}_{x}}^{1/2} \leq C_{m} \Big(\sum_{k} \frac{|h_{k}(x)|_{L^{p}_{x}}^{2}}{\lambda_{k}^{2}} \Big)^{1/2}$$

It is known the decay of h_k in L^p (Koch-Tataru, Duke Math.J. 2005): for p ≥ 4, |h_k|_{L^p(ℝ)} ≤ C_pλ_k^{-1/6}, and by interpolation, if 2 ≤ p ≤ 4, |h_k|_{L^p(ℝ)} ≤ C_pλ_k^{-1/3(1-2/p)}.
Recall that λ_k² = 2k + 1 and the series converges for p > 2, i.e., Z_∞ ∈ L^{2m}(Ω; L^p) for any m ≥ p/2 > 1;

i.e.
$$Z_{\infty} \in L^p$$
 a.s. i.e. $\rho(L^p) = 1$ for $p > 2$.

Introduction

Motivation in Physics

Gibbs equilibrium

- Gibbs measure
- Our results

Let $p \geq 3$, $X_0 \in L^p(\mathbb{R})$, $\gamma > 0$ and $\nu = 0$ (Theorems hold also for $\nu > 0$).

Theorem

There exists a set $\mathcal{O} \subset L^p(\mathbb{R})$ such that $\rho(\mathcal{O}) = 1$, and such that for $X_0 \in \mathcal{O}$ there exists a unique solution $X(\cdot) \in C([0,\infty), L^p(\mathbb{R}))$ a.s.

 $P_t\phi(y) := \mathbb{E}(\phi(X(t,y))), y \in \mathcal{O}, t > 0.$

Theorem

Let $\phi \in L^2((L^p, d\rho), \mathbb{R})$, and $\overline{\phi} = \int_{L^p} \phi(y) d\rho(y)$. Then $P_t \phi(\cdot)$ converges exponentially to $\bar{\phi}$ in $L^2((L^p, d\rho), \mathbb{R})$, as $t \to \infty$; more precisely,

$$\int_{L^p} |P_t\phi(y) - \bar{\phi}|^2 d\rho(y) \leq e^{-\gamma t} \int_{L^p} |\phi(y) - \bar{\phi}|^2 d\rho(y).$$

Using Strong Feller property + Irreducibility of P_t on L^p ,

Theorem

For any $X_0 \in L^p(\mathbb{R})$, there exists a unique solution $X(\cdot) \in C([0,\infty), L^p(\mathbb{R}))$ a.s.

R. Fukuizumi (Tohoku Univ.)

Ideas for the proof

Local existence in L^p(ℝ): Write X = v + Z_∞ with v satisfying the deterministic PDE:

$$\partial_t v = (i+\gamma)(\partial_x^2 v - x^2 v - |v+Z_\infty|^2(v+Z_\infty)), \ t > 0, \ x \in \mathbb{R}$$

to obtain a sol. X in $C([0, T^*), L^p), p \ge 3$ (Ginibre-Velo, CMP. 1997) using the estimates on the linear semigroup obtained by Mehler's formula.

Energy methods give a global bound in L^p , but it requires some restriction on the parameter γ . ("not too small $\gamma \neq 0$ ")

- Gibbs measure is invariant for the semigroup P_t .
- Globalization (in ρ- a.e. sense) by the invariance of Gibbs measure ρ supported on L^p(ℝ): Let T > 0, and p ≥ 3. There exists C_T such that

$$\int_{L^p} \mathbb{E}\Big(\sup_{t\in[0,T^*)}|X(t,X_0)|_{L^p})\rho(dX_0) \leq C_{\mathcal{T}}.$$

• Convergence to the equilibrium Key estimate: Poincaré inequality Let $\gamma > 0$. For any $\phi \in C_b^1(L^p)$, the following inequality is satisfied.

$$\int_{L^{p}} |\nabla_{y}\phi(y)|^{2}_{L^{2}_{y}} d\rho(y) \geq \int_{L^{p}} |\phi(y) - \bar{\phi}|^{2} d\rho(y), \quad (1)$$

where $\bar{\phi} = \int_{L^p} \phi(y) d\rho(y)$, describes only measure's property, proved via a dissipative equation:

$$dY = \gamma (\partial_x^2 Y - x^2 Y - |Y|^2 Y) dt + \sqrt{2\gamma} dW.$$

Gibbs measure $\rho(u) = e^{-H(u)} du$ is invariant for both dynamics

$$dX = (i + \gamma)(\partial_x^2 X - x^2 X - |X|^2 X)dt + \sqrt{2\gamma}dW.$$

Important !

• The balance $\gamma > 0$ between noise and dissipation

•
$$H(u) = \frac{1}{2} \int_{\mathbb{R}} |(-\partial_x^2 + x^2)^{1/2} u|^2 dx + \frac{1}{4} \int_{\mathbb{R}} |u|^4 dx$$
 is same for both eqs.