Some theoretical studies on the stochastic Gross-Pitaevskii equation

R. Fukuizumi ${ }^{1}$ A. de Bouard ${ }^{2}$ and A. Debussche ${ }^{3}$
${ }^{1}$ RCPAM, GSIS, Tohoku University, Japan
${ }^{2}$ CMAP, Ecole Polytechnique, France
${ }^{3}$ IRMAR, ENS Cachan Bretagne, France

Advances in mathematical modelling and numerical simulation of superfluids, July 7, 2018 @ AIMS conference, Taipei

Outline

(1) Introduction

- Motivation in Physics
(2) Gibbs equilibrium
- Gibbs measure
- Our results

Outline

(1) Introduction

- Motivation in Physics

2 2 Gibbs equilibrium

- Gibbs measure
- Our results

Dynamics of BEC at positive temperature

- At the zero temperature $T=0$, all the atoms are well-presented by a single condensate function and the coherent evolution of the wave function is described by the standard Gross-Pitaevskii equation
- At higher temperature, all spontaneous and incoherent process (for ex. interaction with thermal cloud) may not be neglected
- The effect of such incoherent elements are implemented by adding a dissipation and a noise to the GP equation, called '(Simple Growth Projected) Stochastic GP equation' (P.B. Blakie et al., Advanced in Physics (2008))

$$
d \psi=\mathcal{P}\left\{-\frac{i}{\hbar} L_{G P} \psi d t+\frac{\gamma}{k_{B} T}\left(\nu-L_{G P}\right) \psi d t+d W(x, t)\right\}
$$

where \mathcal{P} : projection to the lowest energy modes, ν : chemical potential

$$
L_{G P}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x)+g|\psi|^{2},\langle d W(s, y), d W(t, x)\rangle=2 \gamma \delta_{t-s} \delta_{x-y}
$$

This model is in very good qualitative agreement with the experiments aiming to simulate condensation process

- Spontaneous nucleation of vortices in BEC (Weiler et al. Nature (2008)).
- Vortex formation occurrence during a phase transition predicted by Kibble-Zurek mechanism.
Cf. Numerical simulations by Romain Poncet (2017).
- Investigation of the thermal (Gibbs) equilibrium, which gives the classification (Universality class) of the type of phase transitions (M.Kobayashi-L.Cugliandolo Phys. Rev. E (2016))

Remark that essentially, finite dimension models are analyzed in Physics.
Our aim: Study these models from a mathematical point of view, (i.e., in infinite dimension). In particular, interested in the Gibbs equilibrium.

We consider mathematically (for the moment in 1d):

- $(\Omega, \mathcal{F}, \mathbb{P})$: propability space endowed with filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$
- The equation :

$$
\begin{cases}d X & =(i+\gamma)\left(\partial_{x}^{2} X-V(x) X+\nu X-\lambda|X|^{2} X\right) d t+\sqrt{2 \gamma} d W \\ X(0) & =X_{0}, \quad t>0, \quad x \in \mathbb{R}\end{cases}
$$

where $\gamma>0$. Assume $V(x)=x^{2}, \nu \geq 0$ and $\lambda=1$ (defocusing).

- $\left(\partial_{x}^{2}-x^{2}\right) h_{k}=-\lambda_{k}^{2} h_{k}$ with $\lambda_{k}=\sqrt{2 k+1}, k \in \mathbb{N}$. The eigenfunctions $h_{k}(x)$ are known as the Hermite functions.
- $W(t)$: cylindrical Wiener pocess on $L^{2}(\mathbb{R}, \mathbb{C})$, i.e.

$$
W(t, x)=\sum_{k \in \mathbb{N}} \beta_{k}(t) h_{k}(x), \quad t>0, x \in \mathbb{R}
$$

where $\left\{\beta_{\boldsymbol{k}}(t)\right\}_{\boldsymbol{k} \in \mathbb{N}}$: a sequence of \mathbb{C}-valued independent Brownian motions.

Known results

- Burq, Tzvetkov and Thomann, $\left(\gamma=0, \lambda= \pm 1, V(x)=x^{2}, 1 d\right)$ Ann. Inst. Fourier (Grenoble) (2013)
- Construction of Gibbs measure, Global Cauchy theory in the negative Sobolev space.
- Barton-Smith, $(\gamma \neq 0, \lambda= \pm 1, V(x)=0$, bounded domain D, any $d)$ Nonlinear differ. equ. appl.(2004)
- Existence and Uniqueness of invariant measure on $L^{p}(D)(p \in[2, \infty))$ for a not too small $\gamma \neq 0$
- E.A. Carlen, J. Fröhlich and J. Lebowitz, (regular noise, $\lambda=-1$, $V(x)=0$, periodic boundary condi., 1d) Commun. Math. Phys. (2016)
- Construction of the "grand-canonical" Gibbs measure (i.e. modified Hamiltonian by a restoring term) and exponential convergence under some assumptions on the noise

Outline

(1) Introduction
 - Motivation in Physics

(2) Gibbs equilibrium

- Gibbs measure
- Our results

Gibbs measure

- Hamiltonian for the case of $\gamma=0:(\nu=0$ for simplicity $)$

$$
H(u)=\frac{1}{2} \int_{\mathbb{R}}\left|\left(-\partial_{x}^{2}+x^{2}\right)^{1 / 2} u\right|^{2} d x+\frac{1}{4} \int_{\mathbb{R}}|u|^{4} d x
$$

- The Gibbs measure formally:

$$
\begin{aligned}
\rho(d u) & =\Gamma e^{-H(u)} d u \\
& =\Gamma e^{-\frac{1}{4} \int_{\mathbb{R}}|u|^{4} d x} e^{-\frac{1}{2}\left(\left(-\partial_{x}^{2}+x^{2}\right) u, u\right)_{L^{2}} d u}
\end{aligned}
$$

where Γ is the normalizing constant.

- The last part may be written using the decomposition
$u=\sum_{k}\left(a_{k}+i b_{k}\right) h_{k}$ with $\left(a_{k}, b_{k}\right) \in \mathbb{R}^{2}$,

$$
\prod_{k} \frac{\lambda_{k}^{2}}{2 \pi} e^{-\frac{\lambda_{k}^{2}}{2}\left(a_{k}^{2}+b_{k}^{2}\right)} d a_{k} d b_{k}(=: \mu(d u))
$$

This is a Gaussian measure, and can be interpreted as the law of random variable $\sum_{k \in \mathbb{N}} \frac{\sqrt{2}}{\lambda_{k}} g_{k}(\omega) h_{k}(x)$ with $\mathcal{L}\left(g_{k}\right)=\mathcal{N}_{\mathbb{C}}(0,1)$

Gibbs measure and the stationary solution

- Let us denote by

$$
Z_{\infty}(t)=\sqrt{2 \gamma} \int_{-\infty}^{t} e^{-(t-s)(i+\gamma)\left(-\partial_{x}^{2}+x^{2}\right)} d W(s)
$$

the solution of

$$
d Z=(i+\gamma)\left(\partial_{x}^{2}-x^{2}\right) Z d t+\sqrt{2 \gamma} d W
$$

which is stationary.

- Write $Z_{\infty}(t)$ using the basis $\left\{h_{k}\right\}_{k}$,

$$
Z_{\infty}(t)=\sqrt{2 \gamma} \sum_{k \in \mathbb{N}}\left(\int_{-\infty}^{t} e^{-(t-s)(i+\gamma) \lambda_{k}^{2}} d \beta_{k}(s)\right) h_{k}
$$

- The law of $Z_{\infty}(t)$ equals to the Gaussian measure μ, since

$$
\mathcal{L}\left(\sqrt{2 \gamma} \int_{-\infty}^{0} e^{s(i+\gamma) \lambda_{k}^{2}} d \beta_{k}(s)\right)=\mathcal{N}_{\mathbb{C}}\left(0, \frac{2}{\lambda_{k}^{2}}\right)
$$

Support of the measure

- For $m \in \mathbb{N}, 2 m \geq p$, we have, by Minkowski's inequality,

$$
\left|Z_{\infty}(t)\right|_{L_{\omega}^{2 m}\left(L_{x}^{p}\right)} \leq C_{m}\left|\sum_{k \in \mathbb{N}} \frac{\left|h_{k}(x)\right|^{2}}{\lambda_{k}^{2}}\right|_{L_{x}^{p / 2}}^{1 / 2} \leq C_{m}\left(\sum_{k} \frac{\left|h_{k}(x)\right|_{L_{x}^{p}}^{2}}{\lambda_{k}^{2}}\right)^{1 / 2}
$$

- It is known the decay of h_{k} in L^{p} (Koch-Tataru, Duke Math.J. 2005): for $p \geq 4,\left|h_{k}\right|_{L^{p}(\mathbb{R})} \leq C_{p} \lambda_{k}^{-1 / 6}$, and by interpolation, if $2 \leq p \leq 4,\left|h_{k}\right|_{L^{p}(\mathbb{R})} \leq C_{p} \lambda_{k}^{-\frac{1}{3}\left(1-\frac{2}{p}\right)}$.
- Recall that $\lambda_{k}^{2}=2 k+1$ and the series converges for $p>2$, i.e., $Z_{\infty} \in L^{2 m}\left(\Omega ; L^{p}\right)$ for any $m \geq p / 2>1$; i.e. $Z_{\infty} \in L^{p}$ a.s. i.e. $\rho\left(L^{p}\right)=1$ for $p>2$.

Outline

(1) Introduction
 - Motivation in Physics

(2) Gibbs equilibrium

- Gibbs measure
- Our results

Let $p \geq 3, X_{0} \in L^{p}(\mathbb{R}), \gamma>0$ and $\nu=0$ (Theorems hold also for $\nu>0$).

Theorem

There exists a set $\mathcal{O} \subset L^{p}(\mathbb{R})$ such that $\rho(\mathcal{O})=1$, and such that for $X_{0} \in \mathcal{O}$ there exists a unique solution $X(\cdot) \in C\left([0, \infty), L^{p}(\mathbb{R})\right)$ a.s.
$P_{t} \phi(y):=\mathbb{E}(\phi(X(t, y))), y \in \mathcal{O}, t \geq 0$.

Theorem

Let $\phi \in L^{2}\left(\left(L^{p}, d \underline{\rho}\right), \mathbb{R}\right)$, and $\bar{\phi}=\int_{L^{p}} \phi(y) d \rho(y)$. Then $P_{t} \phi(\cdot)$ converges exponentially to $\bar{\phi}$ in $L^{2}\left(\left(L^{p}, d \rho\right), \mathbb{R}\right)$, as $t \rightarrow \infty$; more precisely,

$$
\int_{L^{p}}\left|P_{t} \phi(y)-\bar{\phi}\right|^{2} d \rho(y) \leq e^{-\gamma t} \int_{L^{p}}|\phi(y)-\bar{\phi}|^{2} d \rho(y)
$$

Using Strong Feller property + Irreducibility of P_{t} on L^{p},

Theorem

For any $X_{0} \in L^{p}(\mathbb{R})$, there exists a unique solution $X(\cdot) \in C\left([0, \infty), L^{p}(\mathbb{R})\right)$ a.s.

Ideas for the proof

- Local existence in $L^{p}(\mathbb{R})$: Write $X=v+Z_{\infty}$ with v satisfying the deterministic PDE:

$$
\partial_{t} v=(i+\gamma)\left(\partial_{x}^{2} v-x^{2} v-\left|v+Z_{\infty}\right|^{2}\left(v+Z_{\infty}\right)\right), t>0, x \in \mathbb{R}
$$

to obtain a sol. X in $C\left(\left[0, T^{*}\right), L^{p}\right), p \geq 3$ (Ginibre-Velo, CMP. 1997) using the estimates on the linear semigroup obtained by Mehler's formula.
Energy methods give a global bound in L^{p}, but it requires some restriction on the parameter γ. ("not too small $\gamma \neq 0$ ")

- Gibbs measure is invariant for the semigroup P_{t}.
- Globalization (in ρ - a.e. sense) by the invariance of Gibbs measure ρ supported on $L^{p}(\mathbb{R})$: Let $T>0$, and $p \geq 3$. There exists C_{T} such that

$$
\int_{L^{p}} \mathbb{E}\left(\sup _{t \in\left[0, T^{*}\right)}\left|X\left(t, X_{0}\right)\right| L^{p}\right) \rho\left(d X_{0}\right) \leq C_{T}
$$

- Convergence to the equilibrium

Key estimate: Poincaré inequality Let $\gamma>0$. For any $\phi \in C_{b}^{1}\left(L^{p}\right)$, the following inequality is satisfied.

$$
\begin{equation*}
\int_{L^{p}}\left|\nabla_{y} \phi(y)\right|_{L_{y}^{2}}^{2} d \rho(y) \geq \int_{L^{p}}|\phi(y)-\bar{\phi}|^{2} d \rho(y) \tag{1}
\end{equation*}
$$

where $\bar{\phi}=\int_{L^{p}} \phi(y) d \rho(y)$, describes only measure's property, proved via a dissipative equation:

$$
d Y=\gamma\left(\partial_{x}^{2} Y-x^{2} Y-|Y|^{2} Y\right) d t+\sqrt{2 \gamma} d W
$$

Gibbs measure $\rho(u)=e^{-H(u)} d u$ is invariant for both dynamics

$$
d X=(i+\gamma)\left(\partial_{x}^{2} X-x^{2} X-|X|^{2} X\right) d t+\sqrt{2 \gamma} d W
$$

Important!

- The balance $\gamma>0$ between noise and dissipation
- $H(u)=\frac{1}{2} \int_{\mathbb{R}}\left|\left(-\partial_{x}^{2}+x^{2}\right)^{1 / 2} u\right|^{2} d x+\frac{1}{4} \int_{\mathbb{R}}|u|^{4} d x$ is same for both eqs.

