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QUANTUM STATISTICS: THE TEXTBOOK APPROACH

Consider a system of N indistinguishable particles: L2((Rd)N) ' ⊗NL2(Rd).

Particles exchange

Exchanging 2 particles doesn’t change the configuration of the system: the
wavefunction is modified only up to a phase factor Pj,k

|ψ(x1, · · · , xj, · · · , xk, · · · , xN)〉 = Pj,k|ψ(x1, · · · , xk, · · · , xj, · · · , xN)〉,

and, thus,

|ψ(x1, · · · , xj, · · · , xk, · · · , xN)〉 = P2
j,k|ψ(x1, · · · , xj, · · · , xk, · · · , xN)〉.

This gives P2
j,k = 1. Thus

I Pj,k = 1 for bosons (with the Bose-Einstein statistic),
I Pj,k = −1 for fermions (with the Dirac-Fermi statistic).

Hence
L2((Rd)N) ' ⊗N

sym
L2(Rd) or ⊗N

antisym
L2(Rd).
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A CLOSER INSPECTION: PATH INTEGRAL FORMALISM FOR 2 PARTICLES

Configuration space

Space of possible position for the particles. For 2 indistinguishables particles,
we have

C2 = {(x1, x2) ∈ Rd; x1 6= x2}\{(x1, x2) = (x2, x1)}.

Path integral formulation

Evolution of 2 particlesab

|ψend〉 =
∑

[γ]∈Phom

eiθ([γ])

∫
γ∈[γ]

dγ eiS(γ)|ψini〉,

where Phom is the set of homotopically equivalent
classes of paths in C2. Two paths γ1 and γ2 are
homotopic if there exists a continuous deformation
F such that

F(γ1) = γ2.

aSchulman, Phys. Rev. 176, 1558 (1968)
bLaidlaw & DeWitt, Phys. Rev. D 3, 1375 (1971)

21

Figure: A loop in C2
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HOMOTOPIC LOOPS IN C2
I For d ≥ 3, C2 is simply connected so two classes of loops

Lhom ' G2 = {σ1 = 1, σ2}

thus,

eiθ([σ1]) = 1 and eiθ([σ2]) = P1,2 = ±1,

which leads to the Bose-Einstein and Dirac-Fermi statistics.

I For d = 2, C2 is multiply connected so there is an infinite number of
classes

Lhom ' B2.

6= or 6=

Figure: Homotopic classes of loops as braids
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THE EMERGENCE OF ANYONS IN 2D

Anyons

Thus, for d = 2, we have

|ψ(x1, · · · , xj, · · · , xk, · · · , xN)〉 = eiπβ |ψ(x1, · · · , xk, · · · , xj, · · · , xN)〉,

for any β ∈ (0, 1). This gives a fractional quantum statistic: anyons.

Fractional quantum Hall effect
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"BOSONIC" ANYONS1

We define

"Bosonic" anyon

ψ(x1, · · · , xN) := e−iα
∑

j<k θj,kψsym(x1, · · · , xN),

where θj,k = angle
(

xj−xk
|xj−xk|

)
.

One can then check that, by exchanging the particles n and m, we have

θn,m = θm,n ± π,

and, thus,

ψ(x1, · · · , xn, · · · , xm, · · · , xN) = e−iα
∑

j<k θj,kψsym(x1, · · · , xn, · · · , xm, · · · , xN)

= e−iα
∑

j<k θj,kψsym(x1, · · · , xm, · · · , xn, · · · , xN)

= e∓iαψ(x1, · · · , xm, · · · , xn, · · · , xN).

This leads to a (bosonic) anyon wavefunction.

1S. Ouvry, Anyons and Lowest Landau Level Anyons, Séminaire Poincaré XI, 77–107 (2007).
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MAGNETIC GAUGE PICTURE

This amount to have a change of gauge on the bosonic wavefunction. Thus, if
ψ evolves with respect to the free hamiltonian

HN =
N∑

k=1

1
2m

(pk)
2

then the hamiltonian corresponding to ψsym is given by

Hamiltonian of "bosonic" anyons

HN,sym =
N∑

k=1

1
2m

(pk − αA(xk))
2,

where

A(xk) = ∂xj

N∑
j=1
j 6=k

θj,k =

N∑
j=1
j 6=k

(xk − xj)
⊥

|xk − xj|2
.
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MEAN-FIELD APPROXIMATION 23 WHEN N → +∞
We replace the magnetic potential A(xk) by a mean-field approximation

A[%](x) :=

∫
R2

(x− y)⊥

|x− y|2 %(y)dy = ∇⊥w ∗ %(x),

where

%(x) :=

∫
R2(N−1)

|ψ(x, x2, · · · , xN)|2dx and w(x) = log |x|.

The dimensionless hamiltonian becomes

HN,sym =
N∑

k=1

(pk − (N − 1)αA[%](xk))
2.

Taking ψ = u⊗N (and % = |u|2) and assuming (N − 1)α = β, we derive

Mean-field energy of a pure state

E(u) = N−1〈u⊗N,HN,symu⊗N〉L2 =

∫
R2

∣∣∣(−i∇+ βA[|u|2])u
∣∣∣2 dx.

2D. Lundholm & N. Rougerie, The average field approximation for almost bosonic extended anyons, J.
Stat. Phys. 161, 1236-1267 (2015)

3M. Correggi, D. Lundholm & N. Rougerie, Local density approximation for the almost-bosonic anyon
gas, Analysis & PDE 10, 1169-1200 (2017)
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GRADIENT METHOD UNDER CONSTRAINT

Computing the ground state amounts to solve

min
u∈S(L2(R2)

E(u),

where S(L2(R2) = {v ∈ L2(R2); ‖v‖L2 = 1}.

Gradient of E

DūE(u) =−∆− 2βA[|u|2] · i∇+β2|A[|u|2]|2 − 2βA
[
A[|u|2]|u|2 − J[u]

]
,

where
J[u] := −= (u∇ū) and A[v] = ∇⊥w ∗ v.

We can recognize a kinetic term, a nonlinear transport term and a nonlinear
potential. Also, A is a nonlocal functional.

15 / 25
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THE NONLINEAR CONJUGATE GRADIENT METHOD

Classical nonlinear conjugate gradient (NCG)

d0 = −g0,

for n = 1, 2, . . .
{

dn = −gn + βndn−1,
un = un−1 + τndn,

where
gn = DūE(un), τn = argmin

τ>0
E(un−1 + τdn),

and

βn =
‖gn‖2

L2

‖gn−1‖2
L2

(Fletcher− Reeves) or
〈gn − gn−1, gn〉L2

‖gn−1‖2
L2

(Polak− Ribiere).
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A PROJECTED AND PRECONDITIONNED NONLINEAR CONJUGATE

GRADIENT METHOD45

Projection on the constraint manifold
I Projection on the tangent space

gn = TS,un DūE(un) and dn = TS,un (−gn + βndn−1)

where TS,un v := v− 〈v,un〉L2
〈un,un〉L2

un.

I Projection on space

τn = argmin
τ>0

E(PS(un−1 + τdn)) and un = PS(un−1 + τdn),

where PSv = v
‖v‖L2

.

4X. Antoine, A. Levitt & Q. Tang, Efficient spectral computation of the stationary states of rotating
Bose?Einstein condensates by preconditioned nonlinear conjugate gradient methods, Journal of
Computational Physics 343 (2017)

5I. Danaila & B. Protas, Computation of Ground States of the Gross-Pitaevskii Functional via
Riemannian Optimization, SIAM J. Scientific Computing, 39(6), p. B1102-B1129-94 (2017)
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A PROJECTED AND PRECONDITIONNED NONLINEAR CONJUGATE
GRADIENT METHOD

Preconditionning

We introduce
pn = M gn,

where M is a preconditonner (here M = (1−∆)−1).

Projected and preconditionned nonlinear conjugate gradient

d0 = −p0,

for n = 1, 2, . . .
{

dn = TS,un (−pn + βndn−1),
un = PS(un−1 + τndn),

where

gn = TS,un DūE(un), pn = (1−∆)−1gn, τn = argmin
τ>0

E(PS(un−1 + τdn)),

and

βn =
〈gn − gn−1, pn〉L2

〈gn−1, pn−1〉L2
.
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SPACE DISCRETIZATION

The pseudo-spectral discretization
I The problem is solved on a uniform cartesian grid

OJ,K = {xj,k, (j, k) ∈ PJ,K} ⊂ [−Lx, Lx]× [−Ly, Ly]

with (J + 1)(K + 1) points,
I The boundary conditions are periodic, i.e. the unknown array u =

(u(xj,k))j,k verifies

u1,k = uJ+1,k, and uj,1 = uj,K+1.
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PSEUDO-SPECTRAL APPROXIMATION OF THE GRADIENT

We need to approximate the operators from

Gradient of E

DūE(u) =−∆− 2βA[|u|2] · i∇+ β2|A[|u|2]|2 − 2βA
[
A[|u|2]|u|2 − J[u]

]
,

where
J[u] := −= (u∇ū) and A[v] = ∇⊥w ∗ v.

where J[u] := −= (u∇ū).

I For the differential operators, we have the symbols

[∂x]uj,k = iFFT (ξp FFT(u)p,`))j,k and [∂y]uj,k = iFFT (η` FFT(u)p,`))j,k .

I Hence, the main difficulty is to evaluate the operator A, i.e. the convolu-
tion with w.
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THE SINGULAR INTEGRAL

By applying a FFT, we obtain

(w ∗ v)j,k = iFFT (ŵp,`FFT(v)p,`)j,k

Problem
Since w(x) = log |x| (Newton potential), we deduce

ŵp,` = 2π(ξ2
p + η2

`)
−1.

22 / 25



Modeling anyons Computing the ground state of a system of anyons

KERNEL TRUNCATION METHOD6

Since O is bounded, the idea is to replace w with a truncation

wR(x) = w(x)1|x|≤R,

with R = 3 max(Lx, Ly). This leads to

Fourier transform of truncated Kernel

ŵR,p,` =
1− J0(Rsp,`)

s2
p,`

− R log(R)
J1(Rsp,`)

sp,`
,

where J0, J1 are Bessel functions and

sp,` =
√
ξ2

p + η2
`.

This lifts the singularity since

1− J0(Rs)
s2 →

s→0

(
R
2

)2

and
J1(Rs)

s
→

s→0

R
2
.

6F. Vico, L. Greengard & M. Ferrando, Fast convolution with free-space Green’s functions, J. Comput.
Phys. 323, 191–203 (2016)
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SIMULATIONS
Computations of ground states for

E(u) =

∫
R2

(∣∣∣(−i∇+ βA[|u|2])u
∣∣∣2 + V(x)|u|2

)
dx,

with V(x) = 1
2 |x|

2.

Figure: β = 5 on the left and β = 20 on the right.
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SIMULATIONS

Figure: β = 35 on the left and β = 90 on the right.
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