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QUANTUM STATISTICS: THE TEXTBOOK APPROACH
Consider a system of N indistinguishable particles: L*((R)V) ~ @NL*(R?).

Particles exchange

Exchanging 2 particles doesn’t change the configuration of the system: the
wavefunction is modified only up to a phase factor P; x

|w(x17"' 3 Xjy oy Xkt 7xN)> :P]',kld)(xla"' s Xyt 5 Xyt ,.XN)>7
and, thus,
|w(x1"" s Xjyt oy Xyt ,JCN)> :P]2,k|,l/)(x1) s Xjy m 3 Xyt va)>'
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QUANTUM STATISTICS: THE TEXTBOOK APPROACH
Consider a system of N indistinguishable particles: L*((R)V) ~ @NL*(R?).

Particles exchange

Exchanging 2 particles doesn’t change the configuration of the system: the
wavefunction is modified only up to a phase factor P; x

|1/J(x17"' 3 Xjy oy Xkt 7xN)> :P]';kl":[}(xla"' s Xyt 5 Xyt 7xN)>7
and, thus,
|w(x1"" s Xjyt oy Xyt 7xN)> :P]2,k|,¢)(x1) s Xjy m 3 Xyt va)>'

This gives Pﬁk = 1. Thus
» Pjix = 1 for bosons (with the Bose-Einstein statistic),
» P; = —1 for fermions (with the Dirac-Fermi statistic).
Hence
LX(RYN) ~ @VL*(RY) or @V L*(RY).
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A CLOSER INSPECTION: PATH INTEGRAL FORMALISM FOR 2 PARTICLES

Configuration space

Space of possible position for the particles. For 2 indistinguishables particles,
we have
Co = {(x1,12) € R 21 # 2\ {(x1,%2) = (x2,21)}.

Path integral formulation

Evolution of 2 particles’

|wend> _ Z ei@(['}’]) / d’)/ €is(7)|¢ini>7
veh]

[7]€Phom

where Ppom is the set of homotopically equivalent

classes of paths in C;. Two paths ; and ~, are

homotopic if there exists a continuous deformation

F such that Figure: A loop in C,
F(m) =

“Schulman, Phys. Rev. 176, 1558 (1968)
"Laidlaw & DeWitt, Phys. Rev. D 3, 1375 (1971)
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HOMOTOPIC LOOPS IN (>

» Ford > 3, C; is simply connected so two classes of loops
[rhom ~6, = {Ul = 1702}
thus,
U — 1 and U2D —p,, = +1,

which leads to the Bose-Einstein and Dirac-Fermi statistics.
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HOMOTOPIC LOOPS IN (>

» Ford > 3, C; is simply connected so two classes of loops
Ehom ~6, = {Ul = 1702}
thus,
U — 1 and U2D —p,, = +1,

which leads to the Bose-Einstein and Dirac-Fermi statistics.

» For d = 2, C; is multiply connected so there is an infinite number of
classes
Lhom ~ %Z.
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Figure: Homotopic classes of loops as braids
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THE EMERGENCE OF ANYONS IN 2D
Thus, for d = 2, we have
|1/}(x17"' s Xjy ot 3 Xkt ,XN)> :eiWB|w(x17"' s Xyt 5 Xyt ,XN)>,

for any 8 € (0,1). This gives a fractional quantum statistic: anyons.
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THE EMERGENCE OF ANYONS IN 2D
Thus, for d = 2, we have
|1/}(x17"' s Xjy ot 3 Xkt ,XN)> :eiWB|w(x17"' s Xyt 5 Xyt ,XN)>,

for any 8 € (0,1). This gives a fractional quantum statistic: anyons.

Fractional quantum Hall effect

K
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"BOSONIC" ANYONS!

We define

"Bosonic" anyon

w(xh e ,.XN) = e_ia Zi<k Bj’k¢sym(xl7 e >xN)a

where 6;; = angle ( o )

[ — x|

One can then check that, by exchanging the particles n and m, we have

en,m = em,n + ™,
and, thus,
—i 0
d)(xl;"' S Xyt Xyt ’xN) —e 10‘2/<k /,kwsym(xh... S Xyt Xyt 7xN)
—i 0
— o i Sick ”klﬁsym(xlw" Xty Xyttt XN
:g:Flaql)(xl’... S Xy Xy ’xN).

This leads to a (bosonic) anyon wavefunction.

1g. Ouvry, Anyons and Lowest Landau Level Anyons, Séminaire Poincaré XI, 77-107 (2007).
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MAGNETIC GAUGE PICTURE

This amount to have a change of gauge on the bosonic wavefunction. Thus, if
1) evolves with respect to the free hamiltonian

Hy = Ly
N—Z%(Pk)

k=1

then the hamiltonian corresponding to ¥sym is given by

Hamiltonian of "bosonic" anyons

|

1
HN,sym = Z %(Pk - aA(xk))27
k=1

where

— )
6;20];( Z \xk—x|2'
=l
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MEAN-FIELD APPROXIMATION 23 WHEN N — +00
We replace the magnetic potential A(xx) by a mean-field approximation

Al = [ S0 oty = Vs o),

where
o(x) ::/ [ (x, x2, - - - ,xN)\de and w(x) = log|x|.
R2(N—1)

The dimensionless hamiltonian becomes
N

Hysym = ) (pe — (N = 1)aA[g] (x))".

k=1

Taking ¢ = u®" (and ¢ = |u|?) and assuming (N — 1)a = /3, we derive

Mean-field energy of a pure state

E() = N~ (u®N, Hy symti®) 12 = / |~ + APl dx.
R2

D. Lundholm & N. Rougerie, The average field approximation for almost bosonic extended anyons, J.
Stat. Phys. 161, 1236-1267 (2015)

®M. Correggi, D. Lundholm & N. Rougerie, Local density approximation for the almost-bosonic anyon
gas, Analysis & PDE 10, 1169-1200 (2017)
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GRADIENT METHOD UNDER CONSTRAINT

Computing the ground state amounts to solve

min  &(u),
uES(L2(R?)

where S(L*(R?) = {v € L*(R?); ||v||.2 = 1}.

Gradient of £

Dt () =—A = 28A[lul’] - iV+AAlul]” - 284 [Allul ]l = Tl
where
Jiu] ;== =S (uVii) and Afv] = Vwxo.

We can recognize a kinetic term, a nonlinear transport term and a nonlinear
potential. Also, A is a nonlocal functional.
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THE NONLINEAR CONJUGATE GRADIENT METHOD

Classical nonlinear conjugate gradient (NCG)

dO = —8o,

forn=1,2,... { Z: z ;fl—:%ﬂ:l’
where
g =DaE(un), ™= argir(\;in E(un—1 + 7dy),
and
Bn = M (Fletcher — Reeves) or (8 = gn-1 gz (Polak — Ribiere).

 lignallz, lIgn-11lZ2
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A PROJECTED AND PRECONDITIONNED NONLINEAR CONJUGATE
GRADIENT METHOD?*?

Projection on the constraint manifold

» Projection on the tangent space

8n = %,unDﬂg(un) and d, = 7—S,un (_gn ar ,Bndnfl)

<v:un>L2

where Ts,.,v =0 — Tt itn) 2

» Projection on space
T = argmin E(Ps(up—1 + 7dn)) and  uy = Ps(un—1 + 7dn),
>0

v

where Psv = .
ere st = 1o,

*X. Antoine, A. Levitt & Q. Tang, Efficient spectral computation of the stationary states of rotating
Bose?Einstein condensates by preconditioned nonlinear conjugate gradient methods, Journal of
Computational Physics 343 (2017)

51. Danaila & B. Protas, Computation of Ground States of the Gross-Pitaevskii Functional via
Riemannian Optimization, SIAM J. Scientific Computing, 39(6), p. B1102-B1129-94 (2017)
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A PROJECTED AND PRECONDITIONNED NONLINEAR CONJUGATE
GRADIENT METHOD

Preconditionning

We introduce
Pn = Mgn,
where M is a preconditonner (here M = (1 — A)™1).
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A PROJECTED AND PRECONDITIONNED NONLINEAR CONJUGATE
GRADIENT METHOD

Preconditionning

We introduce
Pn = Mgn,
where M is a preconditonner (here M = (1 — A)™1).

Projected and preconditionned nonlinear conjugate gradient

dO = —Po,

_ dn = ,TS,un(_pn + Bndn71)7
forn=1,2,... { 1ty = Po(tin_1 + ody),
where
8 = Tou, Da€(a), pn=(1—A)"'gs, 7= argmin &(Ps(un1 + 7dn)),
>0
and

By = (n —gn-1,Pn)12
(§n—1,Pn—1)12
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SPACE DISCRETIZATION

The pseudo-spectral discretization

» The problem is solved on a uniform cartesian grid
Ork = {Xjk, (k) € Prx} C [=La, La] X [=Ly, L]

with (J + 1)(K + 1) points,

» The boundary conditions are periodic, i.e. the unknown array u =
(u(xjx))jx verifies

g =1k, and w1 = k.
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PSEUDO-SPECTRAL APPROXIMATION OF THE GRADIENT

We need to approximate the operators from

Gradient of £

Dif(u) = — A = 28A[u] - iV + 8| AP} - 284 [ALuP)|ul” - Tu]]
where
Jlu] ;== =S (uVit) and Afv] = Viwxo.

where J[u] :== - (uVu).

» For the differential operators, we have the symbols

[Ov]ujx = IFFT (& FFT(u)M))], and  [0y]ujx = iFFT (ne FFT(u)p.e))

k Jik
» Hence, the main difficulty is to evaluate the operator A, i.e. the convolu-
tion with w.
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THE SINGULAR INTEGRAL

By applying a FFT, we obtain
(w*v)jx =IFFT (Z/AUp,gFFT(‘U)p,g)jyk

Since w(x) = log |x| (Newton potential), we deduce

ﬁ)p,g = 27'('(6; + 17%)_1.
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KERNEL TRUNCATION METHOD6
Since O is bounded, the idea is to replace w with a truncation
wr(x) = w(x)1jy <R,

with R = 3max(Ly, Ly). This leads to

Fourier transform of truncated Kernel

— R R
ZALRJLE ! ]02( SV*Z) I:ICg(I:)]l( Spl) )
S Sp.e
P, P,

where Jo, J1 are Bessel functions and

Spe =\/& + 1.

This lifts the singularity since

1—Jo(Rs) R\’ Ji(Rs) R
s? o (E) and s 2"

®F. Vico, L. Greengard & M. Ferrando, Fast convolution with free-space Green’s functions, ]. Comput.
Phys. 323, 191-203 (2016)
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SIMULATIONS
Computations of ground states for

e = [ (|- + saluphuf + veolur ) ax,

with V(x) = 1|x|*.

011
01
00
00
007
006
005
00
00
00
001
15 10 5 o s 0

Figure: 8 = 5 on the left and 8 = 20 on the right.
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SIMULATIONS

Figure: 8 = 35 on the left and 5 = 90 on the right.
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