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Bose-Einstein Condensation

Bose-Einstein condensation (BEC) is a state where the bosons
collapse into the lowest quantum state near temperature
absolute zero.

Predicted by Satyendra Nath Bose and Albert Einstein in
1924-1925

First experiments in 1995, Science 269 (E. Cornell and C. Wieman et

al., 87Rb JILA), PRL 75 (Ketterle et al., 23Na MIT ) and PRL 75 (Hulet

et al., 7Li Rice).
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Mathematical model for BEC at extremely low temperature

Quantum N-body problem

3N + 1 dim linear Schrödinger equation

Mean-field theory: weakly interacting dilute ultra cold gases

Gross-Pitaevskii equation (GPE): T � Tc

3 + 1 dim NLSE with cubic nonlinearity and external potential
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Mathematical model for BEC with N identical bosons

N-body problem: 3N + 1 dim linear Schrödinger equation

i~∂tΨN(x1, x2, . . . , xN , t) = HNΨN(x1, x2, . . . , xN , t) with

HN =
N∑
j=1

(
− ~2

2m∆j + V (xj)
)

+
∑

1≤j<k≤N
Vint(xj − xk)

Hatree anstaz: ΨN(x1, . . . , xN , t) =
∏N

j=1 ψ(xj , t), xj ∈ R3

Ultracold dilute regime: Vint(xj − xk) ≈ g δ(xj − xk), with g = 4π~2as
m

Ultracold dilute quantum gas: two-body interactions

EN (ΨN ) =
∫
R3N ΨNHNΨN dx1 · · · dxN ≈ NE(ψ)−−− Energy per particle
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Mathematical model for BEC

Energy per particle: mean-field theory (Lieb et al. 00’),

E (ψ) =
∫
R3

[
~2

2m |∇ψ|2 + V (x)|ψ|2 + Ng
2 |ψ|4

]
dx

Dynamics: (Gross, 61’; Pitaevskii, 61’; Erdös, Schlein&Yau, 10’)

i~∂tψ(x, t) = δE(ψ)

δψ
=
[
− ~2

2m∇2 + V (x) + Ng |ψ|2
]
ψ

Proper nondimensionalization&dimension reduction GPE/NLSE

i∂tψ = −1
2∇2ψ + V (x)ψ + β|ψ|2ψ, x ∈ Rd , β = 4πNas

xs
.
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Mathematical model for BEC

Gross-Pitaevskii equation-(GPE/NLSE) by Gross 1961,
Pitaevskii 1961

i∂tψ = −1

2
∇2ψ + V (x)ψ + β|ψ|2ψ, x ∈ Rd , t > 0

t time; x ∈ Rd spatial coordinates in d = 1, 2, 3 dimensions

ψ(x, t): complex valued wave-function

V (x): real valued external potential

β: dimensionless interaction constant

β > 0 repulsive; β < 0 attractive
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Two conservation laws

Mass conservation

‖ψ(·, t)‖2
L2 =

∫

R3

|ψ(x , t)|2 dx =

∫

R3

|ψ(x , 0)|2 dx = ‖ψ(·, 0)‖L2

Energy conservation

E (ψ(·, t)) :=

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β|ψ|4
2

]
dx = E (ψ(·, 0))
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Finite size effect/shape dependence

δ function approximation of atomic interaction potential is good for low
momentum

Vint(xj − xk) = Vmf(xj − xk) := g0δ(xj − xk), g0 =
4π~2as

m

For higher momentum (high density)–improved pseudopotential1

Vint(xj−xk) = Vmf(xj−xk)+Vhoi(xj−xk), Vhoi(x) =
g0g1

2

[
δ(x)∇2 +∇2δ(x)

]
g1 =

a2
s
3
− as re

2
;

re : the effective range of the two-body interactions

QUANTUM MECHANICAL MANY —BODY PROBLEM 769

It should be remembered that Eq. (11) may actually
be incorrect inside the sphere r=a, as the right-hand
side may fail to converge. However, if we neglect all
phase shifts )I i with l)L, say, Eq. (12) would have only
a 6nite number of terms on the right-hand side. The
solution of such an equation would satisfy the boundary
conditions at r=a for all partial waves up to /=L.
Equation (12) is therefore to be understood in the
following sense: it is to be solved by first taking a finite
number L of spherical harmonics and then approaching
the limit L~~.

The first term on the right-hand side of (12) repre-
sents the exact pseudopotential for S waves. H we
expand its strength in powers of k'.

the pseudopotential requires that some care be exercised
when one applies the usual perturbation formulas in an
actual calculation.

(b) Illustrative Example

To illustrate the method of pseudopotentials intro-
duced previously, we now apply it to a simple problem
in which the exact solution is trivially known. By
comparing the exact solution with an approximate
solution obtained by treating the pseudopotentials as
perturbations, we can hope to gain some familiarity
with the method.

The example we shall discuss is the spherically
symmetric solution of the wave equation

=a+-', (ka)'(-', a)+—k cotgo
(13)

(V2+k2)/= 0,

with the boundary conditions

(17)

t (21+1)"7
$2l+1

tang ~

= (21+1)a"+'+power series in k' (14)

Thus E'-wave e&ects are of the order a', D-wave of the
order a', etc. The lowest order term in each multipole is
independent of O'. If higher order terms are considered
in a calculation, we may look upon k' as an operator
whose e8ect on the wave function is given by the
implicit equation

we see that the first term, the scattering length, was the
only one included in the approximate equation (3).The
next term involves the effective range -', a, and is of the
order a'. If we contemplate a perturbation calculation in
which a can be considered an expansion parameter, the
first term above describes correctly effects up to the
order a

The other terms on the right-hand side of (12) give
the contributions from higher partial waves. The
strength of the 3th multipole is

sink (r—a)
P„=L2~(R—a))-: (19)

with eigenvalues

k„=2r)2/(R —a), n=1, 2, 3, . (20)

This admits a power series expansion in a. In fact, by
direct expansion of (19) and (20), we can write the wave
functions as follows:

(0)+P (i)+It, (2)+. . . (21)

sine„r
p„(())=

g(22rR) r

1 )(„a ( r q sin)(„r
p„()—

(
1——

)( cos)(„r——', , (21a)
Q(22rR) r E R 2 )(„R

/=0 for r=R and r=a, (R)a). (18)

The normalized spherically symmetric solutions can be
written down immediately:

k2$= f —V2+pseudopotentials)P, (15) where )(„=2r22/R, and for the eigenvalues:

so that through an iterative procedure we may under-
stand, symbolically:

8 4x 8
k'= —V'+42rab(r) —r——a2() (r) V'—r+ (16)

3 ter

Equations (12), (15),and (16)define the pseudopotential
for the two-body system under consideration. It yields
the exact energy and the exact wave function for r&a.

It should be pointed out that the pseudopotential
derived here is not a Hermitian operator. This should
not cause any misgivings since the extended wave
function is not supposed to represent a wave function
for any physical system. It coincides, however, with the
actual wave function except for a limited region of space
which is of no physical interest. The non-Hermiticity of

2 2r2222/(R a) —
2 (0)+2 (1)+2 (2)+. . .

(21b)
2„&')= (1+1)(a/R) ')( '

For spherically symmetric solutions the S-wave
pseudopotential exactly replaces the boundary condition
at r= a, so that from (12), (13), and (16) the equation

(V2+k2)y=
4m 8

~(r)—(4)—k cotka Br

8
=42rab(r) [1+-'a2V2+ j—(rP) (22)

Br

is exactly equivalent to (17) and (18).We can be certain
that a perturbation calculation based on (22) with a as

1Esry-Greene 99’; Collin-Massignan-Pethick, 07’; Fu-Wang-Gao, 02’;
K.Huang-C.N.Yang, T.D Lee 57’
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Modified GPE

Modified Gross-Pitaevskii equation:

i∂tψ =

[
−1

2
∇2 + V (x) + β|ψ|2 − δ∇2|ψ|2

]
ψ,

V (x): confinement

β: contact interaction/ proportional to N

δ: higher order interaction/ proportional to N

other applications

ultrashort laser pulses in plasmas
description of the thin-film super fluid condensates
study of the Heisenberg ferromagnets
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Normalization and energy

Normalization (mass) conservation

‖ψ(·, t)‖2
L2 =

∫

R3

|ψ(x , t)|2 dx =

∫

R3

|ψ(x , 0)|2 dx = ‖ψ(·, 0)‖L2 = 1

Energy

E(ψ(·, t)) :=

∫
R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β|ψ|4
2

+
δ

2
|∇|ψ|2|2

]
dx = E(ψ(·, 0))
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Mathematical studies

Cauchy problem for Time dependent MGPE

global well-posedness in H∞ (M. Poppenberg 01’)
local well-posedness in Hs (s ≥ 2[N/2] + 2)(M. Colin 02’)
local well-posedness in Hs s ≥ (d + 5)/2(J. Marzuola, J.
Metcalfe, D. Tataru, 12’ 14’)
numerical studies (J. Lu, J. L. Marzuola, 15’)

Time-independent MGPE

Standing waves/stability (M. Colin, L. Jeanjean, M. Squassina
03’ 04’...)
existence.. (J. Liu, Y. Wang, Z. Wang 02’,03’...)
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Ground States in the context of BEC

• Nonconvex minimization problem

E (φg ) = min
φ∈S

E (φ), S =
{
φ
∣∣‖φ‖ = 1, E (φ) <∞

}

• Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

µφ =

[
−1

2
∇2 + V (x) + β|φ|2 − δ∇2|φ|2

]
φ, ‖φ‖2 = 1

• Chemical potential µ:

µ = E (φ) +

∫

Rd

(
β

2
|φ|4 +

δ

2

∣∣∇|φ|2
∣∣2
)

dx
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Ground state, existence and uniqueness

Theorem

(i )Suppose δ 6= 0 and lim
|x|→∞

V (x) =∞, then there exists a

minimizer φg ∈ S of if and only if δ > 0.
(2) e iθφg is also a ground state. The ground state φg can be
chosen as non-negative |φg | and the non-negative ground state is
unique if δ ≥ 0 and β ≥ 0.
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Properties of ground state

Theorem

Let δ > 0 and φg ∈ S be the nonnegative ground state, we have:
(i) There exists α > 0 and C > 0 such that |φg (x)| ≤ Ce−α|x|

(ii) If V (x) ∈ L∞loc(Rd), we have φg is once continuously
differentiable and ∇φg is Hölder continuous with order 1. In
particular, if V (x) ∈ C∞, φg is smooth.

Proof by De Giorgi iteration
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limit as |β| → +∞, δ → +∞

V (sx) = |s|2V (x) (Harmonic potential/ whole space case)

Introduce
φ(x) = εd/2φε(xε),

E(φ) =
1

ε2

∫
Rd

[
ε4

2
|∇φε|2 + V (x)|φε|2 +

βεd+2

2
|φε|4 +

δε4+d

2

∣∣∣∇|φε|2∣∣∣2] dx,

critical when δε4+d ∼ βεd+2
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6

3

β = C0δ
d+2

d+4 + β0

δ = C1β
d+4

d+2 + δ0

δ = −C2β
d+4

d+2 + δ0

IV

II

I

δ

β

III
(a)

β = C0δ + β0
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δ = −C2β + δ0
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II

I

δ

β

III
(b)

FIG. 3. Phase diagram for extreme regimes: (a) is for har-
monic potential case and (b) is for box potential case. In the
figure, we choose β0 ≫ 1 and δ0 ≫ 1, and C0, C1 and C2

positive constants.

A. TF approximation with harmonic potential

From Fig. 3(a), the curve β = O(δ
d+2
d+4 ) is the boundary

that divides the regimes for harmonic potential case. To

be more specific, if β ≫ δ
d+2
d+4 , the cubic nonlinear term

is more important, and vise versa. If β = O(δ
d+2
d+4 ), both

of the two nonlinear terms are important, and have to
be taken care of in the TF approximation. The resulting
analytical TF density profiles in different regimes, are
listed below:
Regime I, i.e. β ≫ δ

d+2
d+4 , the δ term and the kinet-

ic energy term are dropped, and the density profile is
determined as

nTF(r) = |ψTF|2 =
γ20(R

2 − r2)+
2β

, (25)

where R =
(

(d+2)C̃dβ
γ2
0

) 1
d+2

, and the constant C̃d is de-

fined as

C̃d =





1
2 , d = 1,
1
π , d = 2,
3
4π , d = 3.

(26)

With the above TF densities, the leading order ap-
proximations for chemical potential µ and energy E of

the ground state are: µTF = 1
2

(
(d+ 2)C̃dβ

) 2
d+2

γ
2d

d+2

0 ,

ETF = d+2
d+4µTF for d (d = 3, 2, 1) dimensional case.

Regime II, i.e. β = C0δ
d+2
d+4 with C0 > 0, neglecting

the kinetic term in the time-independent MGPE, we have

µψ =
γ20 |x|2

2
ψ + C0δ

d+2
d+4 |ψ|2ψ − δ∇2(|ψ|2)ψ. (27)

Formally, Eq. (27) degenerates at position x if ψ(x) = 0
and it is indeed a free boundary problem (boundary of the
zero level set of ψ), which requires careful consideration.
Motivated by [22] for the 3D case, we impose n′(R) =
0 besides the condition that n(R) = 0 along the free
boundary |x| = R, and we assume n(r) = 0 for r > R.
The TF density profile in regime II is self similar under

appropriate scalings. To be more specific, the analytical
TF density takes the form

nTF(r) = |ψTF|2 = δ−
d

d+4n0(δ
− 1

d+4 r), (28)

where n0(r) is a function that can be calculated exactly
as below.
Plugging (28) into (27), we obtain the equation for

n0(r) by imposing the aforementioned conditions at the
free boundary,

µ̃ =
γ20r

2

2
+ C0n0 − ∂rrn0(r) −

d− 1

r
∂rn0(r), (29)

for r ≤ R and n0(s) = 0 for s ≥ R, and n0(R) = 0,
n′
0(R) = 0, where R is the free boundary that has to be

determined and µ̃ = δ−
2

d+4µ. In addition, we assign the
boundary condition at r = 0 as n′

0(0) = 0, because of the
symmetry.
Note that C0 can be negative as δ term can bound the

negative cubic interaction, which corresponds to Regime
IV. In fact for Regime IV, we will repeat the above pro-
cedure.
Denote a =

√
C0 and the ordinary differential equation

(29) in d dimensions can be solved analytically. Denote

fa,d(r) =





ear + e−ar, for d = 1,

I0(ar), for d = 2,

(ear − e−ar)/r, for d = 3,

(30)

where I0(r) is the standard modified Bessel function Iα
with α = 0. Then the solution of Eq. (29) with pre-
scribed Neumann boundary conditions reads as

n0(r) = −γ
2
0r

2

2a2
+

(
µ̃

a2
− dγ20

a4

)
+

γ20R

a2f ′
a,d(R)

fa,d(r). (31)

Inserting the above expression to the normalization con-
dition that

∫
Rd n0(x) dx = 1, we find chemical potential,

µ̃ =
C̃da

2

Rd
+

dγ20R
2

2(d+ 2)
. (32)
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Whole space case

Case 1: β → +∞ and δ/β
4+d
2+d � 1, i.e. δ = o(β

4+d
2+d );

Case 2: β → +∞ and limβ→+∞ δ/β
4+d
2+d = δ∞ > 0;

Case 3: β → +∞ and δ/β
4+d
2+d � 1, i.e. β = o(δ

2+d
4+d ) as

δ → +∞;

Case 1′: β → −∞ and δ/|β| 4+d
2+d � 1, i.e. δ = o(|β| 4+d

2+d );

Case 2′: β → −∞ and limβ→−∞ δ/|β|
4+d
2+d = δ∞ > 0;

Case 3′: β → −∞ and δ/|β| 4+d
2+d � 1, i.e. |β| = o(δ

2+d
4+d ) as

δ → +∞.
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Whole space case

E1(φ) =

∫

Rd

(
V (x)|φ|2 +

1

2
|φ|4

)
dx, for case 1,

E2(φ) =

∫

Rd

(
V (x)|φ|2 +

|φ|4
2

+
δ∞
2
|∇|φ|2|2

)
dx, for case 2,

E3(φ) =

∫

Rd

(
V (x)|φ|2 +

1

2
|∇|φ|2|2

)
dx, for case 3 and 3′,

E2′(φ) =

∫

Rd

(
V (x)|φ|2 − 1

2
|φ|4 +

δ∞
2

∣∣∇|φ|2
∣∣2
)

dx, for case 2′,

E1′(φ) =

∫

Rd

(
1

2

∣∣∇|φ|2
∣∣2 − 1

2
|φ|4

)
dx, for case 1′,
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properties of limiting state

ρg = |φg |2
For E1, the density ρg is given by ρg = max{µ− V (x), 0} with
µ = E1(

√
ρg ) + 1

2
‖ρg‖2

L2 and ‖ρg‖L1 = 1.

For E2, ρg ∈ C 1,α
loc ⊂W 2,p

loc (1 < p <∞ and α < 1) solves the free
boundary value problems

−δ∞∆ρg + ρg = (µ− V (x))χ{ρg>0},

The conditions at the free boundaries are

ρg |∂{ρg>0} = 0, |∇ρg ||∂{ρg>0} = 0.

If V (x) is radially increasing, we have that ρg (x) is radially decreasing
and compactly supported.

For E3, ρg ∈ C 1,α
loc ⊂W 2,p

loc (1 < p <∞ and α < 1) solves a free boundary
value problems

−δ∞∆ρg = (µ− V (x))χ{ρg>0},

For E1′ , there exists a non-increasing radially symmetric minimizer φg

which is unique and compactly supported. In fact, ρ∞ solves the equation

−∆ρg − ρg = µχ{ρg>0}, µ = 2E1′(
√
ρg ).
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Scaling of the limiting profiles

case 1 δ/β
4+d
2+d � 1, set ε = β−

1
2+d

case 2 limβ→+∞ δ/β
4+d
2+d = δ∞, ε = β−

1
2+d

case 3 δ/β
4+d
2+d � 1, ε = δ−

1
4+d

case 1′ δ = o(|β| 4+d
2+d ), ε = |β|1/2/δ1/2

case 2′, limβ→−∞ δ/|β|
4+d
2+d = δ∞ > 0, ε = |β|− 1

2+d .

case 3′, δ/|β| 4+d
2+d � 1, ε = δ−

1
4+d
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Bounded domain

EΩ(φ) =
∫

Ω

[
1
2 |∇φ|2 + β

2 |φ|4 + δ
2

∣∣∇|φ|2
∣∣2
]
dx

Case B1: β → +∞ and δ = o(β);

Case B2: β → +∞ and limβ→+∞ δ/β = δ∞ > 0;

Case B3: β → +∞ and δ/β � 1, i.e. β = o(δ) as δ → +∞;

Case B1′: β → −∞ and δ = o(β);

Case B2′: β → −∞ and limβ→−∞ δ/|β| = δ∞ > 0;

Case B3′: β → −∞ and δ/|β| � 1, i.e. |β| = o(δ) as
δ → +∞.
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Bounded domain

Case B1: Eb(φ) =
∫

Ω
1
2 |φ|4 dx;

Case B2: E+
bd(
√
ρ) =

∫
Ω

[
1
2 |ρ|2 + δ∞

2 |∇ρ|2
]
dx;

Case B3 and B3′: Ed(
√
ρ) =

∫
Ω

1
2 |∇ρ|2 dx;

Case B1′: ε = |β|1/2/δ1/2 with

E1′(φ) =
∫
Rd

(
1
2

∣∣∇|φ|2
∣∣2 − 1

2 |φ|4
)
dx

Case B2′: E−bd(
√
ρ) =

∫
Ω

[
−1

2 |ρ|2 + δ∞
2 |∇ρ|2

]
dx
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Numerical methods

• Gradient flow with discrete normalization (imaginary time
Bao&Du 04’):

∂tφ =

[
1

2
∇2 − V (x)− β|φ(x, t)|2 + δ∇2|φ|2

]
φ(x, t),

φ(x, tn+1) := φ(x, t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ Ω, n ≥ 0,

φ(x, t)|x∈∂Ω = ϕ(x, t)|x∈∂Ω = 0, t ≥ 0;φ(x, 0) = φ0(x),with ‖φ0‖2 = 1

• Full discretization

Backward Euler?—∇2|φ|2? explicit treatment of ∇2|φ|2
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IEQ

• Invariant energy quadratization (X. Yang, J. Shen, Q. Wang, L. Ju, H.
Zhang, ... 16’ 17’):

φn+1 − φn

∆t
=

1

2
∇2φn+1 − V (x)φn+1 − β(φnφn+1)φn + δ∆(φnφn+1)φn,

φ(x, tn+1) := φ(x, t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2

, x ∈ Ω, n ≥ 0
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FIG. 6. Comparisons of 1D numerical ground states with
TF densities, the box potential case in region I, II, III and
IV, which are defined in Fig. 3(b). Red line: analytical TF
approximation, and shaded area: numerical solution obtained
from (22). Domain is {r|0 ≤ r < 2} and the corresponding
β’s and δ’s are (I) β = 1280, δ = 1; (II) β = 320, δ = 160;
(III) β = 1, δ = 160; (IV) β = −400, δ = 80.

Solving the equation and using the normalization con-
dition, we obtain the TF density as

nTF(r) = |ψTF|2 =
(d+ 2)C̃d(R

2 − r2)+
2Rd+2

, (46)

with chemical potential µTF = C̃dd(d + 2)δ/Rd+2 and
energy ETF = µTF/2.
Regime IV, i.e. β = −C0δ, with δ ≫ 1 for some

constant C0 > 0.
Intuitively, if C0 is small, the repulsive HOI δ term is

dominant and the particle density will still occupy the
entire domain. If C0 is sufficiently large, the attractive β
interaction becomes the major effect, where the particles
will be self trapped and the density profile will concen-
trate in a small portion of the domain. Therefore, unlike
the corresponding harmonic potential case, we have two
different situations here.
By a similar procedure as for Regime II, we get

µ

δ
= −C0n(r) − ∂rrn− d− 1

r
∂rn, (47)

with n(R′) = 0 and R′ to be determined. In the first sit-
uation, the density spreads over the whole domain and
thus R′ = R; in the second situation, the density is con-
strained to a small region [0, R′], where 0 < R′ < R.

Case I, i.e. C0 ≤ Ccr, where Ccr = R̂2/R2 and R̂ is
the first positive root of g′a,d(r/a) = 0, where g′a,d(r) is

defined in Eq. (36) with a =
√
C0 . As mentioned before,

because of the relatively weak attractive interaction, we
have the following boundary conditions at the boundary:
n(R) = 0, n′(0) = 0.

The TF density, or solution of Eq. (47), can be ex-
pressed as:

nTF = |ψTF|2 = − µ

a2δ

[
1− ga,d(r)

ga,d(R)

]
, (48)

with µTF = C̃da
2δ/(d

∫
R
0

ga,d(r)r
d−1dr

ga,d(R) − Rd) and ETF =

µTF/2, where C̃d is given in (26).
In fact, the condition C0 ≤ Ccr, which is equiva-

lent to aR ≤ R̂, is necessary. A simple argumen-
t for d=2, 3 case is as follows. If aR > R̂, we know
from the property of ga,d(r) that the image of ga,d(r)

for r ∈ [0, R̂] is exactly the image of ga,d(r) for al-
l r ≥ 0 and ga,d(R) ∈ (min ga,d(r),max ga,d(r)). Then

we can find r0 ∈ (0, R̂) such that ga,d(r0) = ga,d(R), and
1 − ga,d(r)/ga,d(R) changes signs for r around r0. On
the other hand, 1− ga,d(r)/ga,d(R) can’t change signs in
[0, R] since the density must be nonnegative. So we get

a contradiction. Hence aR ≤ R̂, i.e. C0 ≤ Ccr.
g′a,d at r/a can be computed as

g′a,d(r/a) =





−a sin(r), d = 1,

−aJ1(r), d = 2,

a2(r cos(r)− sin(r))/r2 , d = 3,

(49)

and we have for 1D case, R̂ = π; for 2D case,
R̂ = 3.8317 · · · ; for 3D case, R̂ = 4.4934 · · · .

Case II, C0 > Ccr. As observed above, the densi-
ties drop to 0 before reaching the boundaries. Thus,
free boundary conditions should be used as n(R̃) = 0,

n′(R̃) = 0, n′(0) = 0, where R̃ < R is the boundary for
the TF density that we want to find.

Hence the domain [0, R] in Case I needs to be replaced

by [0, R̃] with n′(R̃) = 0. Denoting a =
√
C0 and using

the solution in Case I, we get g′a,d(R̃) = 0, and aR̃ ≤
R̂. Both conditions can only be satisfied when aR̃ = R̂.
Hence R̃ = R̂/a < R.

Replacing R with R̂/a in the TF solution of Case I,
we obtain the analytical TF density

nTF(r) = |ψTF|2 =
C̃da

d

R̂d

[
1− ga,d(r)

ga,d(
R̂
a )

]
, (50)

where R̂ is defined in Case I. Further we have µTF =
−C̃da

d+2δ/R̂d and ETF = µTF/2.

In Fig. 6, we compare the analytical TF densities listed
above with the ground state obtained from numerical re-
sults via Eq. (22) computed by the BEFD method [31] in
various parameter regimes discussed above. Fig. 6 shows
our analytical TF densities are good approximations for
the ground states. Fig. 7 compares the chemical poten-
tials and energies between the TF approximations and
the numerical values by solving Eq. (22).
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