# Ground states of Bose-Einstein condensate with higher order interaction 

Yongyong Cai<br>Beijing Computational Science Research Center joint with W. Bao and X. Ruan

AIMS Taipei, 2018
(1) Gross-Pitaevskii theory for BEC - Gross-Pitaevskii Equation (GPE)
(2) Higher order interactions
(3) Ground state
(4) Ground states profiles for large $\beta$ and $\delta$
(5) Conclusion

## Bose-Einstein Condensation

- Bose-Einstein condensation (BEC) is a state where the bosons collapse into the lowest quantum state near temperature absolute zero.
- Predicted by Satyendra Nath Bose and Albert Einstein in 1924-1925
- First experiments in 1995, Science 269 (E. Cornell and C. Wieman et al., ${ }^{87}$ Rb JILA), PRL 75 (Ketterle et al., ${ }^{23}$ Na MIT ) and PRL 75 (Hulet et al., ${ }^{7}$ Li Rice).



## Mathematical model for BEC at extremely low temperature

- Quantum $N$-body problem
- $3 N+1$ dim linear Schrödinger equation
- Mean-field theory: weakly interacting dilute ultra cold gases
- Gross-Pitaevskii equation (GPE): $T \ll T_{c}$
- 3+1 dim NLSE with cubic nonlinearity and external potential


## Mathematical model for BEC with $N$ identical bosons

- $N$-body problem: $3 N+1$ dim linear Schrödinger equation

$$
\begin{aligned}
& i \hbar \partial_{t} \Psi_{N}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}, t\right)=H_{N} \Psi_{N}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}, t\right) \text { with } \\
& H_{N}=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \Delta_{j}+V\left(\mathbf{x}_{j}\right)\right)+\sum_{1 \leq j<k \leq N} V_{\text {int }}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)
\end{aligned}
$$

- Hatree anstaz: $\Psi_{N}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, t\right)=\prod_{j=1}^{N} \psi\left(\mathbf{x}_{j}, t\right), \quad \mathbf{x}_{j} \in \mathbb{R}^{3}$
- Ultracold dilute regime: $V_{\text {int }}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right) \approx g \delta\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)$, with $g=\frac{4 \pi \hbar^{2} a_{s}}{m}$
- Ultracold dilute quantum gas: two-body interactions

$$
E_{N}\left(\Psi_{N}\right)=\int_{\mathbb{R}^{3 N}} \bar{\Psi}_{N} H_{N} \Psi_{N} d \mathbf{x}_{1} \cdots d \mathbf{x}_{N} \approx N E(\psi)--- \text { Energy per particle }
$$

## Mathematical model for BEC

- Energy per particle: mean-field theory (Lieb et al. $00^{\prime}$ ),

$$
E(\psi)=\int_{\mathbb{R}^{3}}\left[\frac{\hbar^{2}}{2 m}|\nabla \psi|^{2}+V(\mathbf{x})|\psi|^{2}+\frac{N g}{2}|\psi|^{4}\right] d \mathbf{x}
$$

- Dynamics: (Gross, 61'; Pitaesskii, 61'; Erdös, SchleiņYau, 10')

$$
i \hbar \partial_{t} \psi(\mathbf{x}, t)=\frac{\delta E(\psi)}{\delta \bar{\psi}}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{x})+N g|\psi|^{2}\right] \psi
$$

- Proper nondimensionalization\&dimension reduction GPE/NLSE

$$
i \partial_{t} \psi=-\frac{1}{2} \nabla^{2} \psi+V(\mathbf{x}) \psi+\beta|\psi|^{2} \psi, \mathbf{x} \in \mathbb{R}^{d}, \beta=\frac{4 \pi N_{a_{s}}}{x_{s}} .
$$

## Mathematical model for BEC

- Gross-Pitaevskii equation-(GPE/NLSE) by Gross 1961, Pitaevskii 1961

$$
i \partial_{t} \psi=-\frac{1}{2} \nabla^{2} \psi+V(\mathbf{x}) \psi+\beta|\psi|^{2} \psi, \quad \mathbf{x} \in \mathbb{R}^{d}, t>0
$$

- $t$ time; $\mathbf{x} \in \mathbb{R}^{d}$ spatial coordinates in $d=1,2,3$ dimensions
- $\psi(\mathbf{x}, t)$ : complex valued wave-function
- $V(\mathbf{x})$ : real valued external potential
- $\beta$ : dimensionless interaction constant
$\beta>0$ repulsive; $\beta<0$ attractive


## Two conservation laws

- Mass conservation

$$
\|\psi(\cdot, t)\|_{L^{2}}^{2}=\int_{\mathbb{R}^{3}}|\psi(x, t)|^{2} d x=\int_{\mathbb{R}^{3}}|\psi(x, 0)|^{2} d x=\|\psi(\cdot, 0)\|_{L^{2}}
$$

- Energy conservation

$$
E(\psi(\cdot, t)):=\int_{\mathbb{R}^{3}}\left[\frac{1}{2}|\nabla \psi|^{2}+V(\mathbf{x})|\psi|^{2}+\frac{\beta|\psi|^{4}}{2}\right] d x=E(\psi(\cdot, 0))
$$

## Finite size effect/shape dependence

- $\delta$ function approximation of atomic interaction potential is good for low momentum

$$
V_{\mathrm{int}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)=V_{\mathrm{mf}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right):=g_{0} \delta\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right), \quad g_{0}=\frac{4 \pi \hbar^{2} a_{s}}{m}
$$

- For higher momentum (high density)-improved pseudopotential ${ }^{1}$

$$
V_{\mathrm{int}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)=V_{\mathrm{mf}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)+V_{\mathrm{hoi}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right), \quad V_{\mathrm{hoi}}(\mathbf{x})=\frac{g_{0} g_{1}}{2}\left[\delta(\mathbf{x}) \nabla^{2}+\nabla^{2} \delta(\mathbf{x})\right]
$$

- $g_{1}=\frac{\partial_{s}^{2}}{3}-\frac{a_{s} r_{e}}{2}$;
- $r_{e}$ : the effective range of the two-body interactions

$$
\begin{equation*}
k^{2}=-\nabla^{2}+4 \pi a \dot{a}\left(r \frac{\partial}{\partial r} \frac{\partial}{\partial r}-\frac{4 \pi}{3} \frac{a^{2}(r)}{}(r) \frac{\partial}{\partial r}+\cdots\right. \tag{16}
\end{equation*}
$$

Equations (12), (15), and (16) define the pseudopotential for the two-body system under consideration. It yields the exact energy and the exact wave function for $r \geq a$.
It should be pointed out that the pseudopotential derived here is not a Hermitian operator. This should not cause any misgivings since the extended wave function is not supposed to represent a wave function for any physical system. It coincides, however, with the actual wave function except for a limited region of space which is of no physical interest. The non-Hermiticity of

For spherically symmetric solutions the $S$-wave pseudopotential exactly replaces the boundary condition at $r=a$, so that from (12), (13), and (16) the equation

$$
\begin{align*}
& \left(\nabla^{2}+k^{2}\right) \psi=\frac{4 \pi}{-k \cot k a} \delta(\mathbf{r}) \frac{\partial}{\partial r}(n \psi) \\
& \quad=4 \pi a \delta(\mathbf{r})\left[1+\frac{1}{3} a^{2} \nabla^{2}+\cdots\right] \frac{\partial}{\partial r}(n \psi) \tag{22}
\end{align*}
$$

is exactly equivalent to (17) and (18). We can be certain that a perturbation calculation based on (22) with $a$ as

[^0]
## Modified GPE

- Modified Gross-Pitaevskii equation:

$$
i \partial_{t} \psi=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\beta|\psi|^{2}-\delta \nabla^{2}|\psi|^{2}\right] \psi
$$

- $V(\mathbf{x})$ : confinement
- $\beta$ : contact interaction/ proportional to $N$
- $\delta$ : higher order interaction/ proportional to $N$
- other applications
- ultrashort laser pulses in plasmas
- description of the thin-film super fluid condensates
- study of the Heisenberg ferromagnets


## Normalization and energy

- Normalization (mass) conservation

$$
\|\psi(\cdot, t)\|_{L^{2}}^{2}=\int_{\mathbb{R}^{3}}|\psi(x, t)|^{2} d x=\int_{\mathbb{R}^{3}}|\psi(x, 0)|^{2} d x=\|\psi(\cdot, 0)\|_{L^{2}}=1
$$

- Energy

$$
E(\psi(\cdot, t)):=\int_{\mathbb{R}^{3}}\left[\frac{1}{2}|\nabla \psi|^{2}+V(\mathbf{x})|\psi|^{2}+\frac{\beta|\psi|^{4}}{2}+\left.\left.\frac{\delta}{2}|\nabla| \psi\right|^{2}\right|^{2}\right] d x=E(\psi(\cdot, 0))
$$

## Mathematical studies

- Cauchy problem for Time dependent MGPE
- global well-posedness in $H^{\infty}$ (M. Poppenberg 01')
- local well-posedness in $H^{s}(s \geq 2[N / 2]+2)(M$. Colin 02 ')
- local well-posedness in $H^{s} s \geq(d+5) / 2(J$. Marzuola, J. Metcalfe, D. Tataru, 12' 14')
- numerical studies (J. Lu, J. L. Marzuola, 15')
- Time-independent MGPE
- Standing waves/stability (M. Colin, L. Jeanjean, M. Squassina 03' 04'...)
- existence.. (J. Liu, Y. Wang, Z. Wang 02',03'...)


## Ground States in the context of BEC

- Nonconvex minimization problem

$$
E\left(\phi_{g}\right)=\min _{\phi \in S} E(\phi), \quad S=\{\phi \mid\|\phi\|=1, E(\phi)<\infty\}
$$

- Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

$$
\mu \phi=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\beta|\phi|^{2}-\delta \nabla^{2}|\phi|^{2}\right] \phi, \quad\|\phi\|_{2}=1
$$

- Chemical potential $\mu$ :

$$
\mu=E(\phi)+\int_{\mathbb{R}^{d}}\left(\frac{\beta}{2}|\phi|^{4}+\left.\left.\frac{\delta}{2}|\nabla| \phi\right|^{2}\right|^{2}\right) d \mathbf{x}
$$

## Ground state, existence and uniqueness

## Theorem

(i )Suppose $\delta \neq 0$ and $\lim _{|\mathbf{x}| \rightarrow \infty} V(\mathbf{x})=\infty$, then there exists a minimizer $\phi_{g} \in S$ of if and only if $\delta>0$.
(2) $e^{i \theta} \phi_{g}$ is also a ground state. The ground state $\phi_{g}$ can be chosen as non-negative $\left|\phi_{g}\right|$ and the non-negative ground state is unique if $\delta \geq 0$ and $\beta \geq 0$.

## Properties of ground state

## Theorem

Let $\delta>0$ and $\phi_{g} \in S$ be the nonnegative ground state, we have:
(i) There exists $\alpha>0$ and $C>0$ such that $\left|\phi_{g}(\mathbf{x})\right| \leq C e^{-\alpha|\mathbf{x}|}$
(ii) If $V(\mathbf{x}) \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{d}\right)$, we have $\phi_{g}$ is once continuously differentiable and $\nabla \phi_{\mathrm{g}}$ is Hölder continuous with order 1. In particular, if $V(\mathbf{x}) \in C^{\infty}, \phi_{g}$ is smooth.

Proof by De Giorgi iteration

## limit as $|\beta| \rightarrow+\infty, \delta \rightarrow+\infty$

- $V(s \mathbf{x})=|s|^{2} V(\mathbf{x})$ (Harmonic potential/ whole space case)
- Introduce

$$
\begin{gathered}
\phi(\mathbf{x})=\varepsilon^{d / 2} \phi^{\varepsilon}(\mathbf{x} \varepsilon), \\
E(\phi)=\frac{1}{\varepsilon^{2}} \int_{\mathbb{R}^{d}}\left[\frac{\varepsilon^{4}}{2}\left|\nabla \phi^{\varepsilon}\right|^{2}+V(\mathbf{x})\left|\phi^{\varepsilon}\right|^{2}+\frac{\beta \varepsilon^{d+2}}{2}\left|\phi^{\varepsilon}\right|^{4}+\left.\left.\frac{\delta \varepsilon^{4+d}}{2}|\nabla| \phi^{\varepsilon}\right|^{2}\right|^{2}\right] d \mathbf{x},
\end{gathered}
$$

- critical when $\delta \varepsilon^{4+d} \sim \beta \varepsilon^{d+2}$



## Whole space case

- Case 1: $\beta \rightarrow+\infty$ and $\delta / \beta^{\frac{4+d}{2+d}} \ll 1$, i.e. $\delta=o\left(\beta^{\frac{4+d}{2+d}}\right)$;
- Case 2: $\beta \rightarrow+\infty$ and $\lim _{\beta \rightarrow+\infty} \delta / \beta^{\frac{4+d}{2+d}}=\delta_{\infty}>0$;
- Case 3: $\beta \rightarrow+\infty$ and $\delta / \beta^{\frac{4+d}{2+d}} \gg$ 1, i.e. $\beta=o\left(\delta^{\frac{2+d}{4+d}}\right)$ as $\delta \rightarrow+\infty$;
- Case $1^{\prime}: \beta \rightarrow-\infty$ and $\delta /|\beta|^{\frac{4+d}{2+d}} \ll 1$, i.e. $\delta=o\left(|\beta|^{\frac{4+d}{2+d}}\right)$;
- Case $2^{\prime}: \beta \rightarrow-\infty$ and $\lim _{\beta \rightarrow-\infty} \delta /|\beta|^{\frac{4+d}{2+d}}=\delta_{\infty}>0$;
- Case $3^{\prime}: \beta \rightarrow-\infty$ and $\delta /|\beta|^{\frac{4+d}{2+d}} \gg 1$, i.e. $|\beta|=o\left(\delta^{\frac{2+d}{4+d}}\right)$ as $\delta \rightarrow+\infty$.


## Whole space case

$$
\begin{aligned}
& E_{1}(\phi)=\int_{\mathbb{R}^{d}}\left(V(\mathbf{x})|\phi|^{2}+\frac{1}{2}|\phi|^{4}\right) d \mathbf{x}, \quad \text { for case } 1, \\
& E_{2}(\phi)=\int_{\mathbb{R}^{d}}\left(V(\mathbf{x})|\phi|^{2}+\frac{|\phi|^{4}}{2}+\left.\left.\frac{\delta_{\infty}}{2}|\nabla| \phi\right|^{2}\right|^{2}\right) d \mathbf{x}, \quad \text { for case } 2, \\
& E_{3}(\phi)=\int_{\mathbb{R}^{d}}\left(V(\mathbf{x})|\phi|^{2}+\left.\left.\frac{1}{2}|\nabla| \phi\right|^{2}\right|^{2}\right) d \mathbf{x}, \quad \text { for case } 3 \text { and } 3^{\prime}, \\
& E_{2^{\prime}}(\phi)=\int_{\mathbb{R}^{d}}\left(V(\mathbf{x})|\phi|^{2}-\frac{1}{2}|\phi|^{4}+\left.\left.\frac{\delta_{\infty}}{2}|\nabla| \phi\right|^{2}\right|^{2}\right) d \mathbf{x}, \quad \text { for case } 2^{\prime}, \\
& E_{1^{\prime}}(\phi)=\int_{\mathbb{R}^{d}}\left(\left.\left.\frac{1}{2}|\nabla| \phi\right|^{2}\right|^{2}-\frac{1}{2}|\phi|^{4}\right) d \mathbf{x}, \quad \text { for case } 1^{\prime},
\end{aligned}
$$

## properties of limiting state

$\rho_{g}=\left|\phi_{g}\right|^{2}$

- For $E_{1}$, the density $\rho_{g}$ is given by $\rho_{g}=\max \{\mu-V(\mathbf{x}), 0\}$ with $\mu=E_{1}\left(\sqrt{\rho_{g}}\right)+\frac{1}{2}\left\|\rho_{g}\right\|_{L^{2}}^{2}$ and $\left\|\rho_{g}\right\|_{L^{1}}=1$.
- For $E_{2}, \rho_{\mathrm{g}} \in C_{\text {loc }}^{1, \alpha} \subset W_{\mathrm{loc}}^{2, p}(1<p<\infty$ and $\alpha<1)$ solves the free boundary value problems

$$
-\delta_{\infty} \Delta \rho_{g}+\rho_{g}=(\mu-V(\mathbf{x})) \chi_{\left\{\rho_{g}>0\right\}},
$$

The conditions at the free boundaries are

$$
\left.\rho_{g}\right|_{\partial\left\{\rho_{g}>0\right\}}=0, \quad \mid \nabla \rho_{g} \|_{\partial\left\{\rho_{g}>0\right\}}=0 .
$$

If $V(\mathbf{x})$ is radially increasing, we have that $\rho_{g}(\mathbf{x})$ is radially decreasing and compactly supported.

- For $E_{3}, \rho_{g} \in C_{\text {loc }}^{1, \alpha} \subset W_{\text {loc }}^{2, p}(1<p<\infty$ and $\alpha<1)$ solves a free boundary value problems

$$
-\delta_{\infty} \Delta \rho_{g}=(\mu-V(\mathbf{x})) \chi_{\left\{\rho_{g}>0\right\}}
$$

- For $E_{1^{\prime}}$, there exists a non-increasing radially symmetric minimizer $\phi_{g}$ which is unique and compactly supported. In fact, $\rho_{\infty}$ solves the equation

$$
-\Delta \rho_{g}-\rho_{g}=\mu \chi_{\left\{\rho_{g}>0\right\}}, \quad \mu=2 E_{1^{\prime}}\left(\sqrt{\rho_{g}}\right)
$$

## Scaling of the limiting profiles

- case $1 \delta / \beta^{\frac{4+d}{2+d}} \ll 1$, set $\varepsilon=\beta^{-\frac{1}{2+d}}$
- case $2 \lim _{\beta \rightarrow+\infty} \delta / \beta^{\frac{4+d}{2+d}}=\delta_{\infty}, \varepsilon=\beta^{-\frac{1}{2+d}}$
- case $3 \delta / \beta^{\frac{4+d}{2+d}} \gg 1, \varepsilon=\delta^{-\frac{1}{4+d}}$
- case $1^{\prime} \delta=o\left(|\beta|^{\frac{4+d}{2+d}}\right), \varepsilon=|\beta|^{1 / 2} / \delta^{1 / 2}$
- case $2^{\prime}, \lim _{\beta \rightarrow-\infty} \delta /|\beta|^{\frac{4+d}{2+d}}=\delta_{\infty}>0, \varepsilon=|\beta|^{-\frac{1}{2+d}}$.
- case $3^{\prime}, \delta /|\beta|^{\frac{4+d}{2+d}} \gg 1, \varepsilon=\delta^{-\frac{1}{4+d}}$


## Bounded domain

$$
E_{\Omega}(\phi)=\int_{\Omega}\left[\frac{1}{2}|\nabla \phi|^{2}+\frac{\beta}{2}|\phi|^{4}+\left.\left.\frac{\delta}{2}|\nabla| \phi\right|^{2}\right|^{2}\right] d \mathbf{x}
$$

- Case B1: $\beta \rightarrow+\infty$ and $\delta=o(\beta)$;
- Case B2: $\beta \rightarrow+\infty$ and $\lim _{\beta \rightarrow+\infty} \delta / \beta=\delta_{\infty}>0$;
- Case B3: $\beta \rightarrow+\infty$ and $\delta / \beta \gg$ 1, i.e. $\beta=o(\delta)$ as $\delta \rightarrow+\infty$;
- Case $\mathrm{B1}^{\prime}: \beta \rightarrow-\infty$ and $\delta=o(\beta)$;
- Case B2': $\beta \rightarrow-\infty$ and $\lim _{\beta \rightarrow-\infty} \delta /|\beta|=\delta_{\infty}>0$;
- Case $\mathrm{B3}^{\prime}: \beta \rightarrow-\infty$ and $\delta /|\beta| \gg 1$, i.e. $|\beta|=o(\delta)$ as $\delta \rightarrow+\infty$.


## Bounded domain

- Case B1: $E_{b}(\phi)=\int_{\Omega} \frac{1}{2}|\phi|^{4} d \mathbf{x}$;
- Case B2: $E_{b d}^{+}(\sqrt{\rho})=\int_{\Omega}\left[\frac{1}{2}|\rho|^{2}+\frac{\delta_{\infty}}{2}|\nabla \rho|^{2}\right] d \mathbf{x}$;
- Case B3 and $\mathrm{B3}^{\prime}: E_{d}(\sqrt{\rho})=\int_{\Omega} \frac{1}{2}|\nabla \rho|^{2} d \mathbf{x}$;
- Case B1': $\varepsilon=|\beta|^{1 / 2} / \delta^{1 / 2}$ with

$$
E_{1^{\prime}}(\phi)=\int_{\mathbb{R}^{d}}\left(\left.\left.\frac{1}{2}|\nabla| \phi\right|^{2}\right|^{2}-\frac{1}{2}|\phi|^{4}\right) d \mathbf{x}
$$

- Case $\mathrm{B2}^{\prime}: E_{b d}^{-}(\sqrt{\rho})=\int_{\Omega}\left[-\frac{1}{2}|\rho|^{2}+\frac{\delta_{\infty}}{2}|\nabla \rho|^{2}\right] d \mathbf{x}$


## Numerical methods

- Gradient flow with discrete normalization (imaginary time Bao\&Du 04'):

$$
\begin{aligned}
& \partial_{t} \phi=\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\beta|\phi(\mathbf{x}, t)|^{2}+\delta \nabla^{2}|\phi|^{2}\right] \phi(\mathbf{x}, t), \\
& \phi\left(\mathbf{x}, t_{n+1}\right):=\phi\left(\mathbf{x}, t_{n+1}^{+}\right)=\frac{\phi\left(\mathbf{x}, t_{n+1}^{-}\right)}{\left\|\phi\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}}, \quad \mathbf{x} \in \Omega, \quad n \geq 0 \\
& \left.\phi(\mathbf{x}, t)\right|_{\mathbf{x} \in \partial \Omega}=\left.\varphi(\mathbf{x}, t)\right|_{\mathbf{x} \in \partial \Omega}=0, t \geq 0 ; \phi(\mathbf{x}, 0)=\phi_{0}(\mathbf{x}), \text { with }\left\|\phi_{0}\right\|_{2}=1
\end{aligned}
$$

- Full discretization
- Backward Euler?- $\nabla^{2}|\phi|^{2}$ ? explicit treatment of $\nabla^{2}|\phi|^{2}$


## IEQ

- Invariant energy quadratization (X. Yang, J. Shen, Q. Wang, L. Ju, H. Zhang, ... 16' 17'):

$$
\begin{aligned}
& \frac{\phi^{n+1}-\phi^{n}}{\Delta t}=\frac{1}{2} \nabla^{2} \phi^{n+1}-V(\mathbf{x}) \phi^{n+1}-\beta\left(\phi^{n} \phi^{n+1}\right) \phi^{n}+\delta \Delta\left(\phi^{n} \phi^{n+1}\right) \phi^{n}, \\
& \phi\left(\mathbf{x}, t_{n+1}\right):=\phi\left(\mathbf{x}, t_{n+1}^{+}\right)=\frac{\phi\left(\mathbf{x}, t_{n+1}^{-}\right)}{\left\|\phi\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}}, \quad \mathbf{x} \in \Omega, \quad n \geq 0
\end{aligned}
$$





FIG. 6. Comparisons of 1D numerical ground states with TF densities, the box potential case in region I, II, III and IV, which are defined in Fig. 3(b). Red line: analytical TF approximation, and shaded area: numerical solution obtained from (22). Domain is $\{r \mid 0 \leq r<2\}$ and the corresponding $\beta$ 's and $\delta$ 's are (I) $\beta=1280, \delta=1$; (II) $\beta=320, \delta=160$; (III) $\beta=1, \delta=160$; (IV) $\beta=-400, \delta=80$.

## conclusion

- modified GPE for BEC with higher order interactions
- ground states: existence/uniqueness/ regularity
- large interaction limit whole space v.s. bounded domain
- time-dependent problem, well-posedness, numerics, etc?

THANK YOU!


[^0]:    ${ }^{1}$ Esry-Greene 99'; Collin-Massignan-Pethick, 07'; Fu-Wang-Gao, 02'; K.Huang-C.N.Yang, T.D Lee 57'

