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Gross-Pitaevskii Equation (GPE)

Bose-Einstein Condensation

@ Bose-Einstein condensation (BEC) is a state where the bosons
collapse into the lowest quantum state near temperature
absolute zero.

@ Predicted by Satyendra Nath Bose and Albert Einstein in
1924-1925

@ First experiments in 1995, Science 269 (E. Cornell and C. Wieman et
al., % Rb JILA), PRL 75 (Ketterle et al., Na MIT ) and PRL 75 (Hulet
et al., "Li Rice).




Gross-Pitaevskii Equation (GPE)

Mathematical model for BEC at extremely low temperature

@ Quantum N-body problem
e 3N + 1 dim linear Schrodinger equation

@ Mean-field theory: weakly interacting dilute ultra cold gases
o Gross-Pitaevskii equation (GPE): T <« T,

e 3+ 1 dim NLSE with cubic nonlinearity and external potential



Gross-Pitaevskii Equation (GPE)

Mathematical model for BEC with N identical bosons

N-body prob|em: 3N + 1 dim linear Schrédinger equation

iﬁat\UN(Xl,Xz, ey XN, t) = HN\UN(Xl, X2, ...y XN, t) with
N 2
Hy=3 (—22n+ VO)) + 5 Vil —xi)
J=1 1<j<k<N
o Hatree anstaz: Wn(xy,...,xn, t) =[[; ¥(x;,t), x €R’
o Ultracold dilute regime: Ving(x; — xx) ~ g §(x; — x«), with g = %

@ Ultracold dilute quantum gas: two-body interactions

En(Vy) = fR?’N Wy HyWy dxg - - - dxy & NE() — — — Energy per particle



Gross-Pitaevskii Equation (GPE)

Mathematical model for BEC

@ Energy per particle: mean-field theory (Lieb et al. 00'),
2
EW) = Jos [LIVeR + VP + 2 [p)*] dx

[*] Dynamics: (Gross, 61'; Pitaevskii, 61'; Erdés, Schlein&Yau, 10’)

indas(x, 1) = "L = [ 292 4 v(x) + Nelof?] v

] Proper nondimensionalization&dimension reduction G PE/N LSE

i0ep = —3V2 + V(x)y + By, x € RY, § = e,

Xs



Gross-Pitaevskii Equation (GPE)

Mathematical model for BEC

o Gross-Pitaevskii equation-(GPE/NLSE) by Gross 1961,
Pitaevskii 1961

00 = V2 + VO + Bl xR >0

o t time; x € R? spatial coordinates in d = 1,2, 3 dimensions
o 1(x,t): complex valued wave-function

o V/(x): real valued external potential

e [3: dimensionless interaction constant

B > 0 repulsive; 8 < 0 attractive



Gross-Pitaevskii Equation (GPE)

Two conservation laws

@ Mass conservation
(-, )1122 =/ [(x, t)lzdxz/ [9(x,0)|? dx = [|3(-, 0)| 2
R3 R3

@ Energy conservation

dx = E(¢(-,0))

() i= [ 51908 + Ve + 2]



@ J function approximation of atomic interaction potential is good for low
momentum

\/int (xj

@ For higher momentum (high density)-improved pseudopotential®

Vine (Xj—Xk) = Vit (Xj—Xk )+ Vhoi (Xj—Xk),  Vhoi(X) = C [5(X)V2 + V25(X)]

asle

&= 73 -5
@ r.: the effective range of the

9 dr a
B=—V44rad(r)—r——a*3 () V’—r+---.  (16)
a 3 ar

Equations (12), (15),and (16) define the pseudopotential
for the two-body system under consideration. It yields
the exact energy and the exact wave function for r>a.

It should be pointed out that the pseudopotential
derived here is not a Hermitian operator. This should
not cause any misgivings since the extended wave
function is not supposed to represent a wave function
for any physical system. It coincides, however, with the
actual wave function except for a limited region of space
which is of no physical interest. The non-Hermiticity of

—xk) = Vine(Xj — xk) := god(Xj — Xk), &o =

2

two-body interactions

For spherically symmetric solutions the S-wave
pseudopotential exactly replaces the boundary condition
at r=a, so that from (12), (13), and (16) the equation

4 a
(VBN =———3()—(r)
—kcotka "dr

a
=4rab(r)[1+3a*V*+ - - -]a—r("ﬁ) (22)

is exactly equivalent to (17) and (18). We can be certain
that a perturbation calculation based on (22) with a as

1Esry-Greene 99'; Collin-Massignan-Pethick, 07’; Fu-Wang-Gao, 02’
K.Huang-C.N.Yang, T.D Lee 57’

4h?a,

m
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Modified GPE

Modified Gross-Pitaevskii equation:

et = | =5 V24 V) + 0P - 69l s

V(x): confinement
B: contact interaction/ proportional to N
d: higher order interaction/ proportional to N

other applications

o ultrashort laser pulses in plasmas
o description of the thin-film super fluid condensates
o study of the Heisenberg ferromagnets
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Normalization and energy

o Normalization (mass) conservation

. 2, = x, t)]? dx = x,0)|? dx = - n =
960l = [ | 1o(x 0P b= [ 10,0 dx = (-, 0)]z =1

o Energy

,3|1/J|

£, )= [ (1908 + Vel + 255 + Sviver | o= o o)
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Mathematical studies

@ Cauchy problem for Time dependent MGPE

o global well-posedness in H> (M. Poppenberg 01')
o local well-posedness in H® (s > 2[N/2] + 2)(M. Colin 02")

o local well-posedness in H® s > (d + 5)/2(J. Marzuola, J.
Metcalfe, D. Tataru, 12" 14')

o numerical studies (J. Lu, J. L. Marzuola, 15')
@ Time-independent MGPE

e Standing waves/stability (M. Colin, L. Jeanjean, M. Squassina
03' 04'...)

o existence.. (J. Liu, Y. Wang, Z. Wang 02',03"...)
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Ground States in the context of BEC

e Nonconvex minimization problem
i) = Elg), &= {¢lllell = 1, E(¢) < o0}

e Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

o = |3V + VIR + Blof? ~ V216 8, lllla =1

e Chemical potential p:

)
u=@+ [ (Glott+ 5 1VIPF) ox
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Ground state, existence and uniqueness

Theorem

(i )Suppose 6 # 0 and lim V/(x) = oo, then there exists a

[x| =00
minimizer g € S of if and only if § > 0.
(2) eiecbg is also a ground state. The ground state ¢4 can be
chosen as non-negative |¢4| and the non-negative ground state is
unique if § > 0 and 8 > 0.
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Properties of ground state

Let 6 > 0 and ¢g € S be the nonnegative ground state, we have:
(i) There exists a > 0 and C > 0 such that |¢g(x)| < Ce™
(ii) If V(x) € L (RY), we have ¢4 is once continuously
differentiable and V ¢ is Holder continuous with order 1. In

particular, if V(x) € C*, ¢4 is smooth.

Proof by De Giorgi iteration
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limit as |3] = 400, § = +00

e V(sx) = |s|?V(x) (Harmonic potential/ whole space case)

@ Introduce

3(x) = 729 (xe),

E0) = 5 [ [SI967 + Vool

uilks

e critical when de4t9 ~ Bed+2
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(@)

5= —CoBt + 6

(b)

0 =—Cyf+dg

1
3
\5 = Clﬁ% +d
I}
B = Cosit +hy
B
5 1] \
0 =C18+d
1]
ﬁ=005+[7'0i I
B
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Whole space case

Case 1: B — 400 and 5/5% <1 ie d= o(ﬁg%);
Case 2: 8 — +o00 and limg_, 6/5% = e > 0}
Case 3:  — 400 and 5/53% >1,ie = 0(6%) as
0 — 400;

Case 1: § — —oo and §/|8|2H < 1, i.e. & = o(|B]24);
Case 2": f — —oo and limg_,_o 6/]6\3% — Gee 2 )

Case 3: B — —oo and §/|8|Z@ > 1, i.e. |B] = o(d54) as
0 — +o00.
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Whole space case

(o) = [ (V(x)|¢\2+lr¢|4) d e

W‘

V(x)|¢|* + |V|¢5|2|2) dx, for case 2,

E3(¢) = / (V(X)|q25|2 + §|V|¢>|2|2) dx, for case 3 and 3/,

El’(ﬁb):/Rd .

Ex (@) = /R d (v(x)w — Sl \vwf) dx, for case 2/,
(3

|V|¢| | \¢|4> dx, for case 1/,
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properties of limiting state

pe = |og|?
@ For E;, the density pg is given by p, = max{u — V/(x),0} with
1= Ei(/ps) + 3llpellzz and [l pglli = 1.
@ For B, pg € Co% € W2P (1 < p < oo and a < 1) solves the free

loc loc
boundary value problems

—0o0Dpg + pg = (11— V(X)) X{pg>0}

The conditions at the free boundaries are

Pelofog>0r =0, |Vpgllogp,>0y = 0.
If V(x) is radially increasing, we have that pg(x) is radially decreasing
and compactly supported.
@ For B3, pg € CLY C WP (1< p < o0 and a < 1) solves a free boundary

loc loc
value problems

=000 Bpg = (1 — V(X)) X{p, >0}
@ For E;/, there exists a non-increasing radially symmetric minimizer ¢,
which is unique and compactly supported. In fact, poo solves the equation

—Apg — pg = HX{pg>0}, H = 2E1’(\/Pg)~
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Scaling of the limiting profiles

@ casel 6/5% <1, sete= 5_2%1

@ case 2 limg_, 4 5/ﬂ% = o0, € = ﬁ—z%d

@ case 3 5/ﬁ3$§ >1 =474

@ case ' 6 = o(|ﬁ|%), e = |B|1/2/61/2

o case 2/, limg_,_o 5/|5]3% =00 >0,e= \ﬁrz%d_

@ case 3/, 5/|B]‘2% >1,ec= ST
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Bounded domain

Ea(9) = Jq [%rwwz + 5lgl* + 3 \W\ﬂ dx

Case Bl:  — +o0 and § = o(5);

Case B2: 3 — 400 and limg_, 15, 0/8 = 6o > 0;

Case B3: f— +oo and §/5 > 1, i.e. f=0(0) as § — +o0;
Case B1:  — —o0 and 6 = o(p);

Case B2': f — —o0 and limg_,_» 0/|6| = 00 > 0;

Case B3: — —oo and §/|B| > 1, i.e. || = o(6) as
0 — 4o00.
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Bounded domain

Case B1: Ep(¢) = [ 5[8|* dx;

Case B2: E,(\/p) = Jqo [310% + %21 Vp[?] dx
Case B3 and B3": Eq(\/p) = Jo 5IVp|* dx;

Case B1': ¢ = |B|'/2/6%/2 with

Ev(6) = o (3IVI612° = 3101) dx

Case B2': E,,(\/p) = Jo [~3I01? + %2|Vp|?] dx
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Numerical methods

e Gradient flow with discrete normalization (imaginary time
Bao&Du 04'):

006 = | 57 = V(<) — Blotx O +6710P | o(x. ),
¢(X, tn_+1)

(X, thy1) = &(x, t;:q) = xeQ, n>0,

s )l
A%, V)] ecan = 2% t)lyenn = 0, t > 0; ¢(x,0) = do(x), with [|go|l2 = 1

e Full discretization
o Backward Euler?—V?2|¢|?? explicit treatment of V?|¢|2
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e Invariant energy quadratization (X. Yang, J. Shen, Q. Wang, L. Ju, H.
Zhang, ... 16' 17°):

¢n+1 ¢n 1 +1 +1 +1
= VR V(9T = (86 + SA( S,

B(x, tn+1)

(X tn+1) — ¢(X7 n+1) = T = N X € Q’ nz 0
6 tria)ll2”
N B=200,8=5 Lso ‘ ﬂ=200,§=1000
—— =04 — — =04
40 o 7=0.2 ik |
! ——r=0.1 200 :2812
ash — o =on — = r=0.01
o 150f
{l
100§,
50
10 0
0 2 4 6 8 10 0 10 20 30 40
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FIG. 6. Comparisons of 1D numerical ground states with
TF densities, the box potential case in region I, II, ITT and
IV, which are defined in Fig. 3(b). Red line: analytical TF
approximation, and shaded area: numerical solution obtained
from (22). Domain is {r|0 < r < 2} and the corresponding
B’s and §’s are (I) B = 1280, 6 = 1; (II) B = 320, § = 160;
(III) B =1, 6 = 160; (IV) B = —400, § = 80.
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@ modified GPE for BEC with higher order interactions
@ ground states: existence/uniqueness/ regularity
@ large interaction limit whole space v.s. bounded domain

@ time-dependent problem, well-posedness, numerics, etc?
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THANK YOU!
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